Regulatory Neuropeptides (regulatory + neuropeptide)

Distribution by Scientific Domains


Selected Abstracts


Appetite Regulatory Neuropeptides are Expressed in the Sheep Hypothalamus Before Birth

JOURNAL OF NEUROENDOCRINOLOGY, Issue 6 2004
B. S. Mühlhäusler
Abstract In the adult, a hypothalamic neural network acts to maintain energy balance in response to nutritional feedback from the periphery. Although there is an immediate requirement for this system to be functional at birth, it is unknown whether the components of this central neural network are expressed in the developing brain before birth. We therefore examined in the fetal sheep hypothalamus during late gestation gene expression for leptin receptor (OB-Rb) and neuropeptides that regulate energy balance in the adult. Brains were collected from fetal sheep at 110 days (n = 12) and 140 days of gestation (n = 5) (term = 150 days) and gene expression was detected in all hypothalami using in situ hybridization with radiolabelled riboprobes for OB-Rb, neuropeptide Y (NPY), agouti-related peptide, pro-opiomelanocortin and cocaine- and amphetamine-regulated transcript (CART). All mRNAs were expressed in the arcuate nucleus of fetuses at both time points. Additional sites of mRNA expression were the dorsomedial hypothalamus (DMH) for NPY, the paraventricular nucleus (PVN), ventromedial hypothalamus (VMH) and lateral hypothalamic area for CART, and the DMH, PVN and VMH for OB-Rb. We have therefore demonstrated that adult-like localization of gene expression for OB-Rb and key appetite regulatory neuropeptides is established in the ovine hypothalamus before birth. Thus, the fetus possesses a central appetite regulatory neural network with the potential to respond to changes in nutrient supply, which could impact on energy balance regulation both before and after birth. [source]


Quantification of cockroach allatostatin-like peptide and its myotropic effects in males of the earwig Euborellia annulipes

PHYSIOLOGICAL ENTOMOLOGY, Issue 1 2001
Roy Phitayakorn
Summary A monoclonal antibody to allatostatin I of the cockroach Diploptera punctata was used to establish a competitive enzyme-linked immunosorbent assay for quantification of allatostatin-like peptides in the hindgut of the adult male earwig, Euborellia annulipes. Hindguts of 0-day males contained significantly more allatostatin-positive material than those of 8-day males fed on catfood. However, males starved for the first 8 days of adult life had significantly higher levels of allatostatin-positive material than those of either 0-day or of 8-day fed males. Hindguts from 0-day old males exhibited lower spontaneous motility in vitro than those from 8-day males. Hindguts from males at both ages responded to allostatin with reversible, dosage-dependent decreases in hindgut motility, and responded to proctolin with reversible, dosage-dependent increases in hindgut motility. When both allatostatin and proctolin were applied to hindgut preparations simultaneously and in equal concentrations, the response varied with the stage of the male. Starvation enhanced hindgut motility and abolished the response to allatostatin, but not to proctolin. These results indicate the presence of material similar to cockroach allatostatins in male earwigs, and that the levels change with age and physiological stage. Furthermore, such peptides may indeed be regulatory neuropeptides and could modulate hindgut contraction. There was an increase in sensitivity to exogenous allatostatin in the hindgut during development from day 0 to day 8 in feeding males, but a loss in sensitivity in response to starvation; sensitivity to exogenous proctolin also increased with age, but such responsiveness was not diminished by starvation. [source]


Localization of the mRNA encoding prolyl endopeptidase in the rat brain and pituitary

THE JOURNAL OF COMPARATIVE NEUROLOGY, Issue 2 2004
Gaelle Bellemère
Abstract Prolyl endopeptidase (EC 3.4.21.26, PEP), a serine protease that hydrolyzes peptides at the carboxyl side of proline residues, is involved in the breakdown of several proline-containing neuropeptides and, thus, may contribute to the regulation of behavioral activities. In this study, the distribution of PEP mRNA was investigated in the central nervous system and pituitary of rat by means of quantitative reverse transcriptase-polymerase chain reaction analysis and in situ hybridization histochemistry. High densities of PEP transcripts were found in cerebellar Purkinje and granule cells, within most hypothalamic nuclei, in pyramidal neurons of the Ammon's horn, in granule cells of the dentate gyrus, and within the basolateral complex of the amygdala. Moderate levels of PEP mRNA were observed in layers 3,5 of the cerebral cortex, the anterior thalamic group, the septal region, the substantia nigra, the magnocellular neurons of the red nucleus, and the motor nuclei of the cranial nerves. Low concentrations of PEP mRNA were detected in the deep mesencephalic nuclei, the reticular formation, the pretectum, and the tectum. A high density of PEP mRNA was found in the intermediate and the anterior lobes of the pituitary, while the neural lobe was devoid of labeling. In several brain regions, the distribution pattern of PEP mRNA overlapped that of various neuropeptide receptors, suggesting that PEP is actually involved in the inactivation of regulatory neuropeptides. J. Comp. Neurol. 471:128,143, 2004. © 2004 Wiley-Liss, Inc. [source]


Impact of glucose infusion on the structural and functional characteristics of adipose tissue and on hypothalamic gene expression for appetite regulatory neuropeptides in the sheep fetus during late gestation

THE JOURNAL OF PHYSIOLOGY, Issue 1 2005
B. S. Mühlhäusler
In the present study, our aim was to determine whether intrafetal glucose infusion increases fetal adiposity, synthesis and secretion of leptin and regulates gene expression of the ,appetite regulatory' neuropeptides neuropepetide Y (NPY), agouti-related peptide (AGRP), pro-opiomelanocortin (POMC) and cocaine- and amphetamine-regulated transcript (CART) and receptors (leptin receptor (OB-Rb) and melancortin 3 receptor (MC3R)) within the fetal hypothalamus. Glucose (50% dextrose in saline) or saline was infused (7.5 ml h,1) into fetal sheep between 130 and 140 days gestation (term = 150 ± 3 days gestation). Glucose infusion increased circulating glucose and insulin concentrations, mean lipid locule size (532.8 ± 3.3 ,m2versus 456.7 ± 14.8 ,m2) and total unilocular fat mass (11.7 ± 0.6 g versus 8.9 ± 0.6 g) of the perirenal fat depot. The expression of OB-Rb mRNA was higher in the ventromedial nucleus compared to the arcuate nucleus of the hypothalamus in both glucose and saline infused fetuses (F= 8.04; P < 0.01) and there was a positive correlation between expression of OB-Rb and MC3R mRNA in the arcuate nucleus (r= 0.81; P < 0.005). Glucose infusion increased mRNA expression for POMC, but not for the anorectic neuropeptide CART, or the orexigenic neuropeptides NPY and AGRP, in the arcuate nucleus of the fetal hypothalamus. These findings demonstrate that increased circulating glucose and insulin regulate gene expression of the neuropeptides within the fetal hypothalamus that are part of the neural network regulating energy balance in adult life. [source]