Regulatory Events (regulatory + event)

Distribution by Scientific Domains


Selected Abstracts


DksA represses ribosomal gene transcription in Pseudomonas aeruginosa by interacting with RNA polymerase on ribosomal promoters

MOLECULAR MICROBIOLOGY, Issue 4 2005
Karl Perron
Summary In Escherichia coli transcription of ribosomal RNA (rRNA) is regulated by the H-NS and Fis proteins, as well as by the small signal molecule ppGpp and the initiating nucleotides. During amino acid starvation, the concentration of ppGpp increases, and binding of this alarmone to RNA polymerase (RNAP) leads to inhibition of rRNA transcription, a regulatory event called stringent response. Here we show that in Pseudomonas aeruginosa DksA, a protein with pleiotropic effects, is a negative regulator of rRNA transcription both during exponential growth and stringent conditions. A dksA mutant overexpresses rRNA, without being affected in the production of ppGpp. Cell-fractionation and chromosome immunoprecipitation experiments demonstrate that DksA is associated with DNA, in particular with promoters of ribosomal genes in vivo. The binding to rRNA promoters specifically increases during stringent response, and correlates with the binding of RNAP to these regions. Moreover DksA can be copurified with RNAP subunits in vivo. DNA band shift experiments show that DksA, in synergy with ppGpp, increases the binding of RNAP to ribosomal promoters. Therefore DksA might be a new regulator of rRNA transcription in P. aeruginosa. [source]


Multiple crystal forms of the cell-wall invertase inhibitor from tobacco support high conformational rigidity over a broad pH range

ACTA CRYSTALLOGRAPHICA SECTION D, Issue 6 2006
Michael Hothorn
Plant acid invertases catalyse the breakdown of sucrose. Their activity is tightly regulated through interaction with specific protein inhibitors. The complex between the cell-wall invertase inhibitor Nt-CIF and its target enzyme is stable only at acidic pH, as found in the plant cell wall. Since the pH in this compartment can be modulated between pH 4 and 6 in planta, the rapid dissociation of the inhibitor,enzyme complex at neutral pH may represent a regulatory event. Here, it is analyzed whether the inhibitory component undergoes structural rearrangements upon changes in the pH environment. Six crystal forms grown at pH 4.6,9.5 and diffracting up to 1.63,Ĺ indicate only small structural changes in CIF. This suggests that complex dissociation at neutral pH is mediated either by rearrangements in the enzyme or by a complex pattern of surface charges in the inhibitor,enzyme binding interface. [source]


Genistein selectively potentiates arsenic trioxide-induced apoptosis in human leukemia cells via reactive oxygen species generation and activation of reactive oxygen species-inducible protein kinases (p38-MAPK, AMPK)

INTERNATIONAL JOURNAL OF CANCER, Issue 5 2008
Yolanda Sánchez
Abstract The observation that genistein may behave as a pro-oxidant agent lead us to examine the capacity of this isoflavone to modulate the toxicity of the oxidation-sensitive anti-leukemic agent arsenic trioxide (ATO), and for comparison other anti-tumor drugs. Co-treatment with genistein increased ATO-provoked apoptosis and activated apoptosis regulatory events (Bcl-XL down-regulation, cytochrome c and Omi/HtrA2 release from mitochondria, XIAP decrease and caspase-8/Bid and caspase-3 activation) in U937 promonocytes and other human leukemia cell lines (HL60, THP-1, Jurkat, RPMI-8866), but not in phytohemagglutinin-stimulated non-tumor peripheral blood lymphocytes (PBLs). Genistein, alone and with ATO, stimulated reactive oxygen species generation, and apoptosis was attenuated by N -acetyl- L -cysteine and butylated hydroxyanisole. Addition of low H2O2 concentrations mimicked the capacity of genistein to increase ATO-provoked apoptosis in leukemia cells, but not in PBLs. By contrast, co-treatment with genistein or H2O2 failed to potentiate the toxicity of DNA-targeting agent cisplatin, the proteasome inhibitor MG-132 and the histone deacetylase inhibitor MS-275. Within the here used time-period (14 hr) genistein, alone or with ATO, did not significantly affect Akt phosphorylation and NF-,B binding activity, nor decreased intracellular GSH content. However, it elicited N -acetyl- L -cysteine-inhibitable phosphorylation of p38-MAPK and AMPK, and apoptosis was attenuated by pharmacologic inhibitors against these kinases. The pro-oxidant capacity of genistein might be exploited to improve the efficacy of ATO as anti-leukemic agent, and perhaps the efficacy of other oxidation-based therapeutic approaches. © 2008 Wiley-Liss, Inc. [source]


Global transcript profiling of primary stems from Arabidopsis thaliana identifies candidate genes for missing links in lignin biosynthesis and transcriptional regulators of fiber differentiation

THE PLANT JOURNAL, Issue 5 2005
Jürgen Ehlting
Summary Different stages of vascular and interfascicular fiber differentiation can be identified along the axis of bolting stems in Arabidopsis. To gain insights into the metabolic, developmental, and regulatory events that control this pattern, we applied global transcript profiling employing an Arabidopsis full-genome longmer microarray. More than 5000 genes were differentially expressed, among which more than 3000 changed more than twofold, and were placed into eight expression clusters based on polynomial regression models. Within these, 182 upregulated transcription factors represent candidate regulators of fiber development. A subset of these candidates has been associated with fiber development and/or secondary wall formation and lignification in the literature, making them targets for functional studies and comparative genomic analyses with woody plants. Analysis of differentially expressed phenylpropanoid genes identified a set known to be involved in lignin biosynthesis. These were used to anchor co-expression analyses that allowed us to identify candidate genes encoding proteins involved in monolignol transport and monolignol dehydrogenation and polymerization. Similar analyses revealed candidate genes encoding enzymes that catalyze missing links in the shikimate pathway, namely arogenate dehydrogenase and prephenate aminotransferase. [source]


Mechanism and biological significance of CD44 cleavage

CANCER SCIENCE, Issue 12 2004
Osamu Nagano
There are multiple steps in the metastasis of cancer cells. Tumor cells must first detach from the tumor mass and invade the surrounding extracellular matrix (ECM). In this step, cell surface adhesion molecules play an important role in the interaction between the cells and their microenvironments. CD44 is an adhesion molecule that interacts with hyaluronic acid (HA) and is implicated in a wide variety of physiological and pathological processes. Recently, proteolytic cleavages of CD44 have been emerging as key regulatory events for the CD44 dependent cell-matrix interaction and signaling pathway. CD44 undergoes sequential proteolytic cleavages in the ectodomain and intramem-branous domain, resulting in the release of a CD44 intracellular domain (ICD) fragment. The ectodomain cleavage of CD44 is triggered by multiple stimulations and contributes to the regulation of cell attachment to and migration on HA matrix. The ectodomain cleavage subsequently induces the intramembranous cleavage, which is mediated by presenilin (PS)-dependent y-secre-tase. The intramembranous cleavage generates CD44ICD, which acts as a signal transduction molecule; it is translocated to the nucleus and activates transcription. An understanding of the underlying mechanism of these cleavages of CD44 could provide novel therapeutic targets for cancer cell invasion and metastasis. [source]


Hedgehog signaling and congenital malformations

CLINICAL GENETICS, Issue 3 2005
E Nieuwenhuis
The Hedgehog (Hh)-signaling pathway is essential for numerous developmental processes in Drosophila and vertebrate embryos. Hh signal transduction encompasses a complex series of regulatory events, including the generation of the mature Hh ligand, propagation of the ligand from source of production as well as the reception and interpretation of the signal in Hh-receiving cells. Many congenital malformations in humans are known to involve mutations in various components of the Hh-signaling pathway. This mini review summarizes some recent findings about the regulation of Hh signal transduction and describes the spectrum of human congenital malformations that are associated with aberrant Hh signaling. Based on a comparison of mouse-mutant phenotypes and human syndromes, we discuss how Hh-dependent Gli activator and repressor functions contribute to some of the congenital malformations. [source]