Home About us Contact | |||
Regeneration Research (regeneration + research)
Selected AbstractsBeyond early development: Xenopus as an emerging model for the study of regenerative mechanismsDEVELOPMENTAL DYNAMICS, Issue 6 2009Caroline W. Beck Abstract While Xenopus is a well-known model system for early vertebrate development, in recent years, it has also emerged as a leading model for regeneration research. As an anuran amphibian, Xenopus laevis can regenerate the larval tail and limb by means of the formation of a proliferating blastema, the lens of the eye by transdifferentiation of nearby tissues, and also exhibits a partial regeneration of the postmetamorphic froglet forelimb. With the availability of inducible transgenic techniques for Xenopus, recent experiments are beginning to address the functional role of genes in the process of regeneration. The use of soluble inhibitors has also been very successful in this model. Using the more traditional advantages of Xenopus, others are providing important lineage data on the origin of the cells that make up the tissues of the regenerate. Finally, transcriptome analyses of regenerating tissues seek to identify the genes and cellular processes that enable successful regeneration. Developmental Dynamics 238:1226,1248, 2009. © 2009 Wiley-Liss, Inc. [source] Mesenchymal stem cell therapy in equine musculoskeletal disease: scientific fact or clinical fiction?EQUINE VETERINARY JOURNAL, Issue 2 2007S. E. TAYLOR Summary The goal in the therapeutic use of mesenchymal stem cells (MSCs) in musculoskeletal disease is to harness the regenerative nature of these cells focussing on their potential to grow new tissues and organs to replace damaged or diseased tissue. Laboratory isolation of MSCs is now well established and has recently been demonstrated for equine MSCs. Stem cell science has attracted considerable interest in both the scientific and clinical communities because of its potential to regenerate tissues. Research into the use of MSCs in tissue regeneration in general reflects human medical needs, however, the nature, prevalence and prognosis of superficial digital flexor tendonitis has put equine veterinary science at the forefront of tendon regeneration research. Much has been investigated and learnt but it must be appreciated that in spite of this, the field is still relatively young and both communities must prepare themselves for considerable time and effort to develop the technology into a highly efficient treatments. The promise of functional tissue engineering to replace old parts with new fully justifies the interest. At present, however, it is important to balance the understanding of our current limitations with a desire to progress the technology. [source] New method of purification for establishing primary cultures of ensheathing cells from the adult olfactory bulb,GLIA, Issue 2 2001Holly H. Nash Abstract Ensheathing cells exclusively enfold olfactory axons. The ability of olfactory axons to reinnervate the adult mammalian olfactory bulb throughout the lifetime of an organism is believed to result from the presence of this unique glial cell in the olfactory system. This theory has been substantiated by research demonstrating the ability of transplanted ensheathing cells to promote axonal regrowth in areas of the central nervous system that are normally nonpermissive. A simple method for purifying ensheathing cells resulting in a large yield of cells is therefore invaluable for transplantation studies. We have developed such a method based on the differing rates of attachment of the various harvested cell types. The greatest percentage of cells (70.4%) that attached during the first step of the separation was determined to be fibroblasts. The remainder of the cells were classified as astrocytes (20.8%) and ensheathing cells (6.8%). The percentage of attached astrocytes (67.6%) was greatly increased during the second purification step while the percentage of fibroblasts decreased greatly (27.9%) and the percentage of ensheathing cells (5.3%) slightly decreased. In the final cultures, 93.2 % of the attached cells were ensheathing cells, while astrocytes (5.9%) and fibroblasts (1.4%) were only minor components. This simple, inexpensive method of purifying ensheathing cells will facilitate their use in central nervous system regeneration research. GLIA 34:81,87, 2001. © 2001 Wiley-Liss, Inc. [source] A simple protocol for paraffin-embedded myelin sheath staining with osmium tetroxide for light microscope observationMICROSCOPY RESEARCH AND TECHNIQUE, Issue 7 2008Federica Di Scipio Abstract Experimental investigation of peripheral nerve fiber regeneration is attracting more and more attention among both basic and clinical researchers. Assessment of myelinated nerve fiber morphology is a pillar of peripheral nerve regeneration research. The gold standard for light microscopic imaging of myelinated nerve fibers is toluidine blue staining of resin-embedded semithin sections. However, many researchers are unaware that the dark staining of myelin sheaths typically produced by this procedure is due to osmium tetroxide postfixation and not due to toluidine blue. In this article, we describe a simple pre-embedding protocol for staining myelin sheaths in paraffin-embedded nerve specimens using osmium tetroxide. The method involves immersing the specimen in 2% osmium tetroxide for 2 h after paraformaldeyde fixation, followed by routine dehydration and paraffin embedding. Sections can then be observed directly under the microscope or counterstained using routine histological methods. Particularly good results were obtained with Masson's trichrome counterstain, which permits the imaging of connective structures in nerves that are not detectable in toluidine blue-stained resin sections. Finally, we describe a simple protocol for osmium etching of sections, which makes further immunohistochemical analysis possible on the same specimens. Taken together, our results suggest that the protocol described in this article is a valid alternative to the conventional resin embedding-based protocol: it is much cheaper, can be adopted by any histological laboratory, and allows immunohistochemical analysis to be conducted. Microsc. Res. Tech., 2008. © 2008 Wiley-Liss, Inc. [source] False resurrections: Distinguishing regenerated from spared axons in the injured central nervous systemTHE JOURNAL OF COMPARATIVE NEUROLOGY, Issue 1 2003Oswald Steward Abstract Several recent studies report that axon regeneration can be induced in the mature mammalian nervous system by novel treatments or genetic manipulations. In assessing these reports, it is important to be mindful of the history of regeneration research, which is littered with the corpses of studies that reported regeneration that later proved incorrect. One important reason is the "spared axon conundrum," in which axons that survive a lesion are mistakenly identified as having regenerated. Here, we illustrate the problem and propose criteria that may be used to identify regenerated vs. spared axons, focusing on the injured spinal cord. J. Comp. Neurol. 459:1,8, 2003. © 2003 Wiley-Liss, Inc. [source] |