Reference Trajectory (reference + trajectory)

Distribution by Scientific Domains


Selected Abstracts


Optimal Control of Rigid-Link Manipulators by Indirect Methods

GAMM - MITTEILUNGEN, Issue 1 2008
Rainer Callies
Abstract The present paper is a survey and research paper on the treatment of optimal control problems of rigid-link manipulators by indirect methods. Maximum Principle based approaches provide an excellent tool to calculate optimal reference trajectories for multi-link manipulators with high accuracy. Their major drawback was the need to explicitly formulate the complicated system of adjoint differential equations and to apply the full apparatus of optimal control theory. This is necessary in order to convert the optimal control problem into a piecewise defined, nonlinear multi-point boundary value problem. An accurate and efficient access to first- and higher-order derivatives is crucial. The approach described in this paper allows it to generate all the derivative information recursively and simultaneously with the recursive formulation of the equations of motion. Nonlinear state and control constraints are treated without any simplifications by transforming them into sequences of systems of linear equations. By these means, the modeling of the complete optimal control problem and the accompanying boundary value problem is automated to a great extent. The fast numerical solution is by the advanced multiple shooting method JANUS. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]


Improvement of tracking performance in designing a GPC-based PID controller using a time-varying proportional gain

IEEJ TRANSACTIONS ON ELECTRICAL AND ELECTRONIC ENGINEERING, Issue 4 2006
Takao Sato
An effective design method of a proportional-integral-derivative (PID) controller is proposed. The PID parameters of the PID controller are designed on the basis of a generalized predictive control (GPC) law. The PID controller has a time-varying proportional gain, and the PID parameters are designed using the future reference trajectory of the GPC. Finally, numerical examples are shown for illustrating the effectiveness of the proposed method. © 2006 Institute of Electrical Engineers of Japan. Published by John Wiley & Sons, Inc. [source]


Reduced-order robust adaptive control design of uncertain SISO linear systems

INTERNATIONAL JOURNAL OF ADAPTIVE CONTROL AND SIGNAL PROCESSING, Issue 7 2008
Qingrong Zhao
Abstract In this paper, a stability and robustness preserving adaptive controller order-reduction method is developed for a class of uncertain linear systems affected by system and measurement noises. In this method, we immediately start the integrator backstepping procedure of the controller design without first stabilizing a filtered dynamics of the output. This relieves us from generating the reference trajectory for the filtered dynamics of the output and thus reducing the controller order by n, n being the dimension of the system state. The stability of the filtered dynamics is indirectly proved via an existing state signal. The trade-off for this order reduction is that the worst-case estimate for the expanded state vector has to be chosen as a suboptimal choice rather than the optimal choice. It is shown that the resulting reduced-order adaptive controller preserves the stability and robustness properties of the full-order adaptive controller in disturbance attenuation, boundedness of closed-loop signals, and output tracking. The proposed order-reduction scheme is also applied to a class of single-input single-output linear systems with partly measured disturbances. Two examples are presented to illustrate the performance of the reduced-order controller in this paper. Copyright © 2007 John Wiley & Sons, Ltd. [source]


Repetitive control of synchronized operations for process applications

INTERNATIONAL JOURNAL OF ADAPTIVE CONTROL AND SIGNAL PROCESSING, Issue 4 2007
James D. Ratcliffe
Abstract Repetitive control (RC) algorithms for a plant, which contain pairs of complex conjugate poles at low frequency, resulting in a resonant system, is the subject area of this paper where the experimental results given are for a gantry robot and conveyor system in which the gantry is required to transfer payloads to a constant velocity conveyor by performing a repeating ,pick and place' operation. Initially, the gantry robot is controlled by means of a PID feedback controller in parallel with a proportional (P-type) repetitive feed-forward loop, while the conveyor operates under proportional feedback control. It is found that the RC system is unable to achieve long-term performance. The performance degrades within a relatively small number of repetitions due to the build up of resonant frequencies in the learning loop. To prevent this, a batch aliasing technique, originally developed for iterative learning control, is modified to work in the RC framework, and is implemented in real-time. The superior performance potential of the aliasing system is demonstrated experimentally. In the second part of this paper, multi-machine systems, are considered where the critical new factor is the relative error between the conveyor and the robot. Here a second supervisory learning loop is proposed for use to shift the reference trajectory of one machine so that the relative placement error is also reduced. Again, supporting experimental results are given. Copyright © 2006 John Wiley & Sons, Ltd. [source]


Finite-time tracking control of a nonholonomic mobile robot,

ASIAN JOURNAL OF CONTROL, Issue 3 2009
Zhao Wang
Abstract In this paper, the finite-time tracking problem is investigated for a nonholonomic wheeled mobile robot in a fifth-order dynamic model. We consider the whole tracking error system as a cascaded system. Two continuous global finite-time stabilizing controllers are designed for a second-order subsystem and a third-order subsystem respectively. Then finite-time stability results for cascaded systems are employed to prove that the closed-loop system satisfies the finite-time stability. Thus the closed-loop system can track the reference trajectory in finite-time when the desired velocities satisfy some conditions. In particular, we discuss the control gains selection for the third-order finite-time controller and give sufficient conditions by using Lyapunov and backstepping techniques. Simulation results demonstrate the effectiveness of our method. Copyright © 2009 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society [source]