Reflection Intensities (reflection + intensity)

Distribution by Scientific Domains


Selected Abstracts


A differential thermal expansion approach to crystal structure determination from powder diffraction data

JOURNAL OF APPLIED CRYSTALLOGRAPHY, Issue 6 2008
P. Fernandes
Differential thermal expansion over the range 90,210,K has been applied successfully to determine the crystal structure of chlorothiazide from synchrotron powder diffraction data using direct methods. Key to the success of the approach is the use of a multi-data-set Pawley refinement to extract a set of reflection intensities that is more `single-crystal-like' than those extracted from a single data set. The improvement in reflection intensity estimates is quantified by comparison with reference single-crystal intensities. [source]


Advances in space-group determination from powder diffraction data

JOURNAL OF APPLIED CRYSTALLOGRAPHY, Issue 4 2007
Angela Altomare
The space-group determination process by powder diffraction data is not straightforward. The low accuracy of the reflection intensities may invalidate the calculation of the probability associated to each extinction group that is compatible with the crystal system determined in the indexation step. Here the combination of the z statistics with two new algorithms is reported: the first checks the quality of each 2, interval in order to omit doubtful z estimates from the calculations; the second creates a list of reflections with peaks that weakly overlap with any other peak, in order to check if any of them violates the extinction rules of the extinction symbol. The new approach has been applied to a large set of test structures and proved to be much more efficient than the procedure based only on the z statistics. [source]


X-ray investigation of CdSe nanowires

PHYSICA STATUS SOLIDI (A) APPLICATIONS AND MATERIALS SCIENCE, Issue 8 2009
Özgül Kurtulu
Abstract CdSe nanowires (NWs) have been prepared by a solution,liquid,solid (SLS) approach using Bi nanocatalysts. Structural characterization has been performed by X-ray powder diffraction providing an admixture of wurtzite and zinc-blende (ZB) structure units separated by different types of stacking faults. The relative contributions of ZB type stacking units within the NWs were determined to be in the order of 3,6% from a set of ratios of reflection intensities appearing in only wurtzite structure to those appearing in both ZB and wurtzite (W) structure. In addition, the anisotropy of domain size within the NWs was evaluated from the evolution of peak broadening for increasing scattering length. The coherence lengths along the growth direction are found to be changing between 16 and 21,nm, smaller than the results obtained from TEM measurement, while the NW diameters are determined to be between 5 and 8,nm which is in good agreement with TEM inspection. [source]


Multipole electron-density modelling of synchrotron powder diffraction data: the case of diamond

ACTA CRYSTALLOGRAPHICA SECTION A, Issue 4 2010
H. Svendsen
Accurate structure factors are extracted from synchrotron powder diffraction data measured on crystalline diamond based on a novel multipole model division of overlapping reflection intensities. The approach limits the spherical-atom bias in structure factors extracted from overlapping powder data using conventional spherical-atom Rietveld refinement. The structure factors are subsequently used for multipole electron-density modelling, and both the structure factors and the derived density are compared with results from ab initio theoretical calculations. Overall, excellent agreement is obtained between experiment and theory, and the study therefore demonstrates that synchrotron powder diffraction can indeed provide accurate structure-factor values based on data measured in minutes with limited sample preparation. Thus, potential systematic errors such as extinction and twinning commonly encountered in single-crystal studies of small-unit-cell inorganic structures can be overcome with synchrotron powder diffraction. It is shown that the standard Hansen,Coppens multipole model is not flexible enough to fit the static theoretical structure factors, whereas fitting of thermally smeared structure factors has much lower residuals. If thermally smeared structure factors (experimental or theoretical) are fitted with a slightly wrong radial model (s2p2 instead of sp3) the radial scaling parameters (`,' parameters) are found to be inadequate and the `error' is absorbed into the atomic displacement parameter. This directly exposes a correlation between electron density and thermal parameters even for a light atom such as carbon, and it also underlines that in organic systems proper deconvolution of thermal motion is important for obtaining correct static electron densities. [source]


X-ray diffraction by a crystal in a permanent external electric field: electric-field-induced structural response in ,-GaPO4

ACTA CRYSTALLOGRAPHICA SECTION A, Issue 1 2006
Semen Gorfman
For the first time, site-selective distortion has been investigated for two different structural units in the ternary compound ,-GaPO4 under the influence of a permanent external electric field. Based on 54 measured reflection intensities, the electric-field-induced distortion of PO4 and GaO4 tetrahedra in ,-GaPO4 crystals is evaluated using a model of pseudoatomic displacements introduced recently [Gorfman, Tsirelson & Pietsch (2005). Acta Cryst. A61, 387396]. A stronger variation of the P,O bond lengths in the PO4 tetrahedron was found compared to the bonds in the GaO4 tetrahedron. The different distortions of the tetrahedra owing to the electric field were analysed in terms of the valence charge density of ,-GaPO4 and its topological characteristics. The larger charge of the P pseudoatom compared to the Ga atom was recognized as the main reason for the higher sensitivity of the PO4 tetrahedron to a permanent external electric field. [source]


Structural phases of hexamethylenetetramine,pimelic acid (1/1): a unified description based on a stacking model

ACTA CRYSTALLOGRAPHICA SECTION B, Issue 4 2003
Gervais Chapuis
The thermotropic phase diagram of 1:1 co-crystals of hexamethylenetetramine and pimelic acid (heptanedioic acid) is investigated. Three crystalline phases are identified at ambient pressure. Phase I is disordered, as revealed by diffuse rods in its diffraction pattern. When the temperature is lowered the diffuse streaks disappear in Phase II, but superstructure reflections emerge indicating an ordering process of the structure through a non-ferroic, or at least non-ferroelastic, phase transition. Phase II is mainly characterized by an unusual distribution of its reflection intensities. Phase III is reached through a ferroelastic phase transition that induces twinned domains. A model based on the stacking of an elementary layer is proposed with the aim of describing the structures in a unified framework. Depending on the value of the unique stacking parameter ,, each of the different structures observed can be reproduced by this model. Its validity is then tested by a series of simulations reproducing the main features of the diffraction patterns such as the diffuse scattering streaks, the occurrence of superstructure peaks at lower temperature and twinning. [source]


Estimates of the twinning fraction for macromolecular crystals using statistical models accounting for experimental errors

ACTA CRYSTALLOGRAPHICA SECTION D, Issue 11 2007
Vladimir Y. Lunin
An advanced statistical model is suggested that is designed to estimate the twinning fraction in merohedrally (or pseudo-merohedrally) twinned crystals. The model takes experimental errors of the measured intensities into account and is adapted to the accuracy of a particular X-ray experiment through the standard deviations of the reflection intensities. The theoretical probability distributions for the improved model are calculated using a Monte Carlo-type simulation procedure. The use of different statistical criteria (including likelihood) to estimate the optimal twinning-fraction value is discussed. The improved model enables better agreement of theoretical and observed cumulative distribution functions to be obtained and produces twinning-fraction estimates that are closer to the refined values in comparison to the conventional model, which disregards experimental errors. The results of the two approaches converge when applied to selected subsets of measured intensities of high accuracy. [source]


A statistic for local intensity differences: robustness to anisotropy and pseudo-centering and utility for detecting twinning

ACTA CRYSTALLOGRAPHICA SECTION D, Issue 7 2003
Jennifer E. Padilla
A new approach to analyzing macromolecular single-crystal X-ray diffraction intensity statistics is presented. Instead of considering reflections in resolution shells, differences between local pairs of reflection intensities are taken and normalized separately. When the two reflections to be compared (having intensities I1 and I2, respectively) are chosen appropriately, the behavior of the parameter L = (I1 , I2)/(I1 + I2) is insensitive to phenomena that tend to confound traditional intensity statistics, such as anisotropic diffraction and pseudo-centering. The distributions and expected values for L take simple forms when the intensity data are from ordinary crystals or from perfectly twinned specimens. The robustness of the approach is demonstrated with examples using real proteins whose diffraction data appear aberrant by other methods of intensity analysis. The new statistic is better suited than other available methods for diagnosing perfect hemihedral twinning. [source]