Home About us Contact | |||
Reductive Dechlorination (reductive + dechlorination)
Selected AbstractsGround Water Transfer Initiates Complete Reductive Dechlorination in a PCE-Contaminated AquiferGROUND WATER MONITORING & REMEDIATION, Issue 3 2007R. Lookman We conducted a field test to investigate whether ground water transfer from one site (showing complete natural reductive dechlorination of chlorinated ethenes to ethene) could induce full reductive dechlorination at another site polluted with tetrachloroethene and its partial dechlorination products trichloroethene and cis -dichloroethene (cDCE). Addition of electron donor (lactate) at the test site established low redox conditions but did not stimulate further dechlorination past cDCE. After transferring 2 m3 of ground water from the first site to the test site, full dechlorination commenced and high levels of ethene were measured to distances up to 6 m downstream of the injection location within 7 months. Ground water samples from monitoring wells were analyzed before and after inoculation of the test site for the presence of Dehalococcoides species (16S ribosomal RNA) and vinyl chloride reductase (vCRA) genes using the polymerase chain reaction. These tests showed that Dehalococcoides species were present both before and after ground water transfer, while vCRA genes were detected at the test site only after ground water transfer. The vCRA genes were detected in ground water samples collected 6 m downstream of the injection locations 7 months after ground water transfer, suggesting that the microorganisms carrying the dehalogenase genes were effectively transported in the aquifer. [source] Treatment of PCB-contaminated soils: I. Evaluation of in situ reductive dechlorination of PCBsENVIRONMENTAL PROGRESS & SUSTAINABLE ENERGY, Issue 2 2001Robert C. Ahlert PhD PE Soil samples were obtained from a site contaminated with PCBs. PCB contamination is not uniform at the source of the samples. Some may be present as isolated "hot spots." The anaerobic phase of a two-stage bioremediation process was evaluated. Populations of native organisms were very low. Species capable of dechlorination of PCBs did not proliferate under anaerobic conditions in the laboratory. Reductive dechlorination did not occur. In-situ reductive dechlorination of heavily substituted PCB congeners is not likely to make a useful contribution to elimination at the site represented by the soil samples. [source] Bioreductive deposition of palladium (0) nanoparticles on Shewanella oneidensis with catalytic activity towards reductive dechlorination of polychlorinated biphenylsENVIRONMENTAL MICROBIOLOGY, Issue 3 2005Wim De Windt Summary Microbial reduction of soluble Pd(II) by cells of Shewanella oneidensis MR-1 and of an autoaggregating mutant (COAG) resulted in precipitation of palladium Pd(0) nanoparticles on the cell wall and inside the periplasmic space (bioPd). As a result of biosorption and subsequent bioreduction of Pd(II) with H2, formate, lactate, pyruvate or ethanol as electron donors, recoveries higher than 90% of Pd associated with biomass could be obtained. The bioPd(0) nanoparticles thus obtained had the ability to reductively dehalogenate polychlorinated biphenyl (PCB) congeners in aqueous and sediment matrices. Bioreduction was observed in assays with concentrations up to 1000 mg Pd(II) l,1 with depletion of soluble Pd(II) of 77.4% and higher. More than 90% decrease of PCB 21 (2,3,4-chloro biphenyl) coupled to formation of its dechlorination products PCB 5 (2,3-chloro biphenyl) and PCB 1 (2-chloro biphenyl) was obtained at a concentration of 1 mg l,1 within 5 h at 28°C. Bioreductive precipitation of bioPd by S. oneidensis cells mixed with sediment samples contaminated with a mixture of PCB congeners, resulted in dechlorination of both highly and lightly chlorinated PCB congeners adsorbed to the contaminated sediment matrix within 48 h at 28°C. Fifty milligrams per litre of bioPd resulted in a catalytic activity that was comparable to 500 mg l,1 commercial Pd(0) powder. The high reactivity of 50 mg l,1 bioPd in the soil suspension was reflected in the reduction of the sum of seven most toxic PCBs to 27% of their initial concentration. [source] Treatment of PCB-contaminated soils: I. Evaluation of in situ reductive dechlorination of PCBsENVIRONMENTAL PROGRESS & SUSTAINABLE ENERGY, Issue 2 2001Robert C. Ahlert PhD PE Soil samples were obtained from a site contaminated with PCBs. PCB contamination is not uniform at the source of the samples. Some may be present as isolated "hot spots." The anaerobic phase of a two-stage bioremediation process was evaluated. Populations of native organisms were very low. Species capable of dechlorination of PCBs did not proliferate under anaerobic conditions in the laboratory. Reductive dechlorination did not occur. In-situ reductive dechlorination of heavily substituted PCB congeners is not likely to make a useful contribution to elimination at the site represented by the soil samples. [source] Enantiomeric composition of chiral polychlorinated biphenyl atropisomers in dated sediment coresENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 2 2007Charles S. Wong Abstract ,Enantiomer fractions (EFs) of seven chiral poly chlorinated biphenyls (PCBs) were measured in dated sediment cores of Lake Hartwell (SC, USA) and Lake Ontario (USA) to detect, quantify, and gain insight regarding microbial reductive dechlorination of PCBs in lake sediments with high and low concentrations, respectively. Lake Hartwell sediments had high total PCBs (5,60 ,g/g), with significantly nonracemic EFs that generally were consistent with those from previous laboratory microcosm reductive dechlorination experiments using sediments from these sites. Thus, stereoselective reductive dechlorination had occurred in situ, including at total PCB concentrations of less than the threshold of approximately 30 to 80 ,g/g suggested as being necessary for reductive dechlorination. Enantiomer fractions of PCBs 91, 95, 132, and 136 in Lake Hartwell cores were significantly correlated both with concentrations of those individual congeners and with total PCB concentration for some sites. This result indicates that enantioselective microbial dechlorination activity increases with higher concentrations within sediments for these congeners. Enantiomer composition reversed with depth for PCBs 91, 132, and 176, suggesting that multiple microbial populations may be present within the same core that are enantioselectively dechlorinating PCBs. Such observations indicate that concentration and time are not the only factors affecting biotransformation, complicating prediction of enantioselectivity. Comparison of EFs with dates suggested biotransformation half-lives of approximately 30 years, which is on the same time scale as sequestration by burial. In contrast, Lake Ontario sediments (maximum total PCBs, 400 ng/g) had racemic or near-racemic amounts of most congeners throughout the core profile, which is consistent with achiral indicators suggesting no microbial biotransformation within Lake Ontario sediments. Thresholds for reductive dechlorination may exist, but they would be at concentrations of less than 30 to 80 ,g/g. [source] Metalloporphyrin solubility: A trigger for catalyzing reductive dechlorination of tetrachloroethyleneENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 2 2004Ishai Dror Abstract Metalloporphyrins are well known for their electron-transfer roles in many natural redox systems. In addition, several metalloporphyrins and related tetrapyrrole macrocycles complexed with various core metals have been shown to catalyze the reductive dechlorination of certain organic compounds, thus demonstrating the potential for using naturally occurring metalloporphyrins to attenuate toxic and persistent chlorinated organic pollutants in the environment. However, despite the great interest in reductive dechlorination reactions and the wide variety of natural and synthetic porphyrins currently available, only soluble porphyrins, which comprise a small fraction of this particular family of organic macrocycles, have been used as electron-transfer shuttles in these reactions. Results from the present study clearly demonstrate that metalloporphyrin solubility is a key factor in their ability to catalyze the reductive dechlorination of tetrachloroethylene and its daughter compounds. Additionally, we show that certain insoluble and nonreactive metalloporphyrins can be activated as catalysts merely by changing solution conditions to bring about their dissolution. Furthermore, once a metalloporphyrin is fully dissolved and activated, tetrachloroethylene transformation proceeds rapidly, giving nonchlorinated and less toxic alkenes as the major reaction products. Results from the present study suggest that if the right environmental conditions exist or can be created, specific metalloporphyrins may provide a solution for cleaning up sites that are contaminated with chlorinated organic pollutants. [source] Anaerobic transformation of compounds of technical toxaphene.ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 11 2003Abstract Technical toxaphene (Melipax) and the single compounds of technical toxaphene (CTTs) 2,2,5- endo, 6- exo, 8,8,9,10- octachlorobornane (B8-806), 2,2,5- endo, 6- exo, 8,9,9,10-octachlorobornane (B8-809), 2,2,5,5,8,9,9,10,10-nonachlorobornane (B9- 1025), 2- endo, 3- exo, 5- endo, 6- exo, 8,8,9,10,10-nonochlorobornane (B9-1679), 2- endo, 3- exo, 5- endo, 6- exo, 8,9,10,10-octachlorobornane (B8-1414), 2- endo, 3- exo, 5- endo, 6- exo, 8,8,9,10-octachlorobornane (B8-1412), and 2- exo, 3- endo, 5- exo, 9,9,10,10-heptachlorobornane (B7-1453) were treated with suspensions of the anaerobic bacterium Dehalospirillum multivorans. After 7 d, more than 50% of technical toxaphene was transformed, and the relative amount of early eluting CTTs increased. After 16 d, only 2- exo, 3- endo, 6- exo, 8,9,10-hexachlorobornane (B6-923), 2- endo, 3- exo, 5- endo, 6- exo, 8,9,10-heptachlorobornane (B7-1001), and a few minor penta- and hexachloro-CTTs were detected in the samples. The result of the transformation was comparable with observations in naturally contaminated sediments and soil. However, the performance with D. multivorans was more simple and reproducible, as well as faster, than use of soil, sediment, or anaerobic sewage sludge. In agreement with reports in the literature, reductive dechlorination at geminal chlorine atoms (gem -Cls) was found to be the major CTT transformation pathway. Experiments conducted with CTTs and gem -Cls at both primary and secondary carbons clarified that the initial Cl -> H substitution takes place at the secondary carbon C2. Furthermore, the 2- endo -Cl position was preferably substituted with hydrogen. In the case of B8-806, the dechlorination at the secondary carbon C2 was approximately 20-fold faster than the subsequent, slow reduction at the primary carbon C8. The three different formerly unknown heptachloro-CTTs, 2- exo, 3- endo, 6- exo, 8,9,9,10-heptachlorobornane (B7-1473), 2- exo, 3- endo, 6- endo, 8,9,9,10-hepatchlorobornane (B7-1461), and 2- exo, 3- endo, 6- exo, 8,8,9,10-heptachlorobornane (B7-1470) were found as intermediates of the B8-806/809 transformation. Treatment of B9-1679 with D. multivorans indicated that gem -Cls on the bridge (C8 and C9) are dechlorinated faster than gem -Cls on the bridgehead (C10). [source] Factors controlling the carbon isotope fractionation of tetra- and trichloroethene during reductive dechlorination by Sulfurospirillum ssp. and Desulfitobacterium sp. strain PCE-SFEMS MICROBIOLOGY ECOLOGY, Issue 1 2007Danuta Cichocka Abstract Carbon stable isotope fractionation of tetrachloroethene (PCE) and trichloroethene (TCE) was investigated during reductive dechlorination. Growing cells of Sulfurospirillum multivorans, Sulfurospirillum halorespirans, or Desulfitobacterium sp. strain PCE-S, the respective crude extracts and the abiotic reaction with cyanocobalamin (vitamin B12) were used. Fractionation of TCE (,C=1.0132,1.0187) by S. multivorans was more than one order of magnitude higher than values previously observed for tetrachloroethene (PCE) (,C=1.00042,1.0017). Similar differences in fractionation were observed during reductive dehalogenation by the close relative S. halorespirans with ,C=1.0046,1.032 and ,C=1.0187,1.0229 for PCE and TCE respectively. TCE carbon isotope fractionation (,C=1.0150) by the purified PCE-reductive dehalogenase from S. multivorans was more than one order of magnitude higher than fractionation of PCE (,C=1.0017). Carbon isotope fractionation of TCE by Desulfitobacterium sp. strain PCE-S (,C=1.0109,1.0122) as well as during the abiotic reaction with cyanocobalamin (,C=1.0154) was in a similar range to previously reported values for fractionation by mixed microbial cultures. In contrast with previous results with PCE, no effects due to rate limitations, uptake or transport of the substrate to the reactive site could be observed during TCE dechlorination. Our results show that prior to a mechanistic interpretation of stable isotope fractionation factors it has to be carefully verified how other factors such as uptake or transport affect the isotope fractionation during degradation experiments with microbial cultures. [source] Bacterial community analysis of shallow groundwater undergoing sequential anaerobic and aerobic chloroethene biotransformationFEMS MICROBIOLOGY ECOLOGY, Issue 2 2007Todd R. Miller Abstract At Department of Energy Site 300, beneficial hydrocarbon cocontaminants and favorable subsurface conditions facilitate sequential reductive dechlorination of trichloroethene (TCE) and rapid oxidation of the resultant cis- dichloroethene (cis -DCE) upon periodic oxygen influx. We assessed the geochemistry and microbial community of groundwater from across the site. Removal of cis -DCE was shown to coincide with oxygen influx in hydrocarbon-containing groundwater near the source area. Principal component analysis of contaminants and inorganic compounds showed that monitoring wells could be differentiated based upon concentrations of TCE, cis -DCE, and nitrate. Structurally similar communities were detected in groundwater from wells containing cis -DCE, high TCE, and low nitrate levels. Bacteria identified by sequencing 16S rRNA genes belonged to seven phylogenetic groups, including Alpha -, Beta -, Gamma - and Deltaproteobacteria, Nitrospira, Firmicutes and Cytophaga,Flexibacter,Bacteroidetes (CFB). Whereas members of the Burkholderiales and CFB group were abundant in all wells (104,109 16S rRNA gene copies L,1), quantitative PCR showed that Alphaproteobacteria were elevated (>106 L,1) only in wells containing hydrocarbon cocontaminants. The study shows that bacterial community structure is related to groundwater geochemistry and that Alphaproteobacteria are enriched in locales where cis -DCE removal occurs. [source] Aerobic biodegradation of the chloroethenes: pathways, enzymes, ecology, and evolutionFEMS MICROBIOLOGY REVIEWS, Issue 4 2010Timothy E. Mattes Abstract Extensive use and inadequate disposal of chloroethenes have led to prevalent groundwater contamination worldwide. The occurrence of the lesser chlorinated ethenes [i.e. vinyl chloride (VC) and cis -1,2-dichloroethene (cDCE)] in groundwater is primarily a consequence of incomplete anaerobic reductive dechlorination of the more highly chlorinated ethenes (tetrachloroethene and trichloroethene). VC and cDCE are toxic and VC is a known human carcinogen. Therefore, their presence in groundwater is undesirable. In situ cleanup of VC- and cDCE-contaminated groundwater via oxidation by aerobic microorganisms is an attractive and potentially cost-effective alternative to physical and chemical approaches. Of particular interest are aerobic bacteria that use VC or cDCE as growth substrates (known as the VC- and cDCE-assimilating bacteria). Bacteria that grow on VC are readily isolated from contaminated and uncontaminated environments, suggesting that they are widespread and influential in aerobic natural attenuation of VC. In contrast, only one cDCE-assimilating strain has been isolated, suggesting that their environmental occurrence is rare. In this review, we will summarize the current knowledge of the physiology, biodegradation pathways, genetics, ecology, and evolution of VC- and cDCE-assimilating bacteria. Techniques (e.g. PCR, proteomics, and compound-specific isotope analysis) that aim to determine the presence, numbers, and activity of these bacteria in the environment will also be discussed. [source] Ground Water Transfer Initiates Complete Reductive Dechlorination in a PCE-Contaminated AquiferGROUND WATER MONITORING & REMEDIATION, Issue 3 2007R. Lookman We conducted a field test to investigate whether ground water transfer from one site (showing complete natural reductive dechlorination of chlorinated ethenes to ethene) could induce full reductive dechlorination at another site polluted with tetrachloroethene and its partial dechlorination products trichloroethene and cis -dichloroethene (cDCE). Addition of electron donor (lactate) at the test site established low redox conditions but did not stimulate further dechlorination past cDCE. After transferring 2 m3 of ground water from the first site to the test site, full dechlorination commenced and high levels of ethene were measured to distances up to 6 m downstream of the injection location within 7 months. Ground water samples from monitoring wells were analyzed before and after inoculation of the test site for the presence of Dehalococcoides species (16S ribosomal RNA) and vinyl chloride reductase (vCRA) genes using the polymerase chain reaction. These tests showed that Dehalococcoides species were present both before and after ground water transfer, while vCRA genes were detected at the test site only after ground water transfer. The vCRA genes were detected in ground water samples collected 6 m downstream of the injection locations 7 months after ground water transfer, suggesting that the microorganisms carrying the dehalogenase genes were effectively transported in the aquifer. [source] Trichlorofluoroethene: A reactive tracer for evaluating reductive dechlorination in large-diameter permeable columnsGROUND WATER MONITORING & REMEDIATION, Issue 2 2005Jennifer A. Field Trichlorofluoroethene (TCFE) was used as a reactive tracer to determine the in situ rate of reductive dechlorination in treatment zones impacted by three large-diameter permeable columns (LDPCs) that were installed at a trichloroethene (TCE),contaminated site. The LDPCs were part of a pilot study to evaluate the effectiveness of hydrogen, lactate, and zero-valent iron for remediating TCE-contaminated ground water. The rate of TCFE reductive dechlorination was determined for each LDPC by means of push-pull tests conducted in each treatment layer. In addition, the distribution of TCFE's lesser chlorinated transformation products was determined. The rates of TCFE reductive dechlorination ranged from 0.05/d to 0.20/d and corresponded to half-lives ranging from 3.5 to 13.9 d. cis -Dichlorofluoroethene was the dominant transformation product detected in all the tests, which is consistent with the findings from pilot tests conducted in the LDPCs prior to the TCFE push-pull tests. cis -Chlorofluoroethene (CFE) and 1,1-CFE also were detected and indicate the potential for vinyl chloride to form under all treatment regimes. Significant production of fluoroethene (FE), the analog of ethene, was observed for only one of the hydrogen treatments. Unambiguous and sensitive detection of the lesser chlorinated products, such as CFE and FE, is possible because TCFE and its transformation products are not found in the background ground water at contaminated sites. Good agreement between the rates and transformation product profiles for TCFE and TCE in both field and laboratory experiments indicates the suitability of TCFE as a surrogate for predicting the rates of TCE reductive dechlorination. [source] Chlorophenol dehalogenation in a magnetically stabilized fluidized bed reactorAICHE JOURNAL, Issue 3 2006Lisa J. Graham Abstract Aromatic halocarbons are often present in contaminated aquifers, surface waters, wastewater streams, soils, and hazardous wastes. The dehalogenation of p-chlorophenol as a model compound in both the aqueous phase and in slurries of contaminated solids using a magnetically stabilized fluidized bed (MSFB) reactor is discussed. Composite palladium-iron (Pd/Fe) media are employed as both catalyst and sacrificial reactant for the reductive dechlorination of p-chlorophenol. Calcium alginate beads impregnated with Pd/Fe granules are fluidized in a recirculating aqueous stream containing either dissolved p-chlorophenol or a slurry of soil contaminated with this chlorocarbon. Magnetic stabilization of the fluidized bed allows substantially higher rates of mass transfer than would otherwise be achievable, and allows circulation of contaminated solids while fluidization media are retained. Anoxic conditions are sustained under a nitrogen purge and the solution pH of 5.8 is maintained by active control to minimize surface fouling by hydroxides, and to minimize mass-transfer resistances resulting from the surface accumulation of hydrogen bubbles. A model of this process is described and the resulting predictions are compared to the experimentally derived data. © 2005 American Institute of Chemical Engineers AIChE J, 2006 [source] Bioremediation of TCE in a fractured limestone aquifer using a novel horizontal passive biobarrierREMEDIATION, Issue 2 2010Charlotte E. Riis This article discusses a project demonstrating the successful use of a novel horizontal biobarrier approach to protect a fractured limestone aquifer from continuing contamination while passive bioremediation of the overlying clay till source area is in progress. The emplacement of the biobarrier has significantly reduced the concentrations of chlorinated ethenes and dechlorination activity in the limestone aquifer, promoting complete reductive dechlorination of the trichloroethene plume. The biobarrier strategy has thus met the challenge of protecting the limestone from the overlying overburden. Direct GeoProbe injections performed in the source area, which consist of a clay till overburden, have also reduced the contaminant concentrations in the clay till due to enhanced dechlorination activity; however, repeat injections may be required to address the areas of the till in which the injectate has not yet been distributed. The time frame for remediating the source area in the till is expected to be on the order of a decade. © 2010 Wiley Periodicals, Inc. [source] Remediation of chlorinated ethenes, ethanes, and methanes in groundwater using carbon- and iron-based electron donorREMEDIATION, Issue 4 2009Nanjun Shetty Field-scale pilot tests were performed to evaluate enhanced reductive dechlorination (ERD) of dissolved chlorinated solvents at a former manufacturing facility located in western North Carolina (the site). Results of the site assessment indicated the presence of two separate chlorinated solvent,contaminated groundwater plumes, located in the northern and southern portions of the site. The key chlorinated solvents found at the site include 1,1,2,2-tetrachloroethane, trichloroethene, and chloroform. A special form of EHC® manufactured by Adventus Americas was used as an electron donor at this site. In this case, EHC is a pH-buffering electron donor containing controlled release carbon and ZV Iron MicroSphere 200, a micronscale zero-valent iron (ZVI) manufactured by BASF. Approximately 3,000 pounds of EHC were injected in two Geoprobe® boreholes in the saprolite zone (southern plume), and 3,500 pounds of EHC were injected at two locations in the partially weathered rock (PWR) zone (northern plume) using hydraulic fracturing techniques. Strong reducing conditions were established immediately after the EHC injection in nearby monitoring wells likely due to the reducing effects of ZV Microsphere 200. After approximately 26 months, the key chlorinated VOCs were reduced over 98 percent in one PWR well. Similarly, the key chlorinated solvent concentrations in the saprolite monitoring wells decreased 86 to 99 percent after initial increases in concentrations of the parent chlorinated solvents. The total organic carbon and metabolic acid concentrations indicated that the electron donor lasted over 26 months after injection in the saprolite aquifer. © 2009 Wiley Periodicals, Inc. [source] Stimulation of aerobic degradation of chlorinated ethenes in soil by microbial inoculationREMEDIATION, Issue 2 2008Talaat Balba Degradation of chlorinated ethenes under aerobic conditions has been reported using a cometabolic pathway. A site in Illinois had shallow contamination and sandy soils, which in combination created aerobic conditions. The aerobic conditions prevented the degradation of chlorinated ethenes by reductive dechlorination. Biodegradation of chloroethenes under aerobic conditions does not occur naturally at all sites; however, it can be enhanced if microorganisms capable of cometabolic degradation are introduced into the soil. In this study, trichloroethene (TCE) removal in the soil was enhanced by the injection of a commercially available microbial inoculum (CL-OUT® inoculum, CL-Solutions, Cincinnati, OH) and nutrients and was compared to chlorinated ethene removal in soil that had received nutrients only and soil that had received activated sludge and nutrients. Trichloroethene removal was measured after one week, seven weeks, and eleven weeks. After one week, no significant TCE removal had occurred in any of the test microcosms. After seven weeks, a slight decrease in TCE levels accompanied by an increase in cis -1,2-dichloroethene (cis -1,2-DCE) was seen in the microcosms that had received CL-OUT®. After 11 weeks, a marked decrease in TCE levels was observed in the microcosms that had received CL-OUT®. No significant TCE decrease was observed in any of the other microcosms. These data suggest that organisms capable of aerobic TCE degradation were not present at the site; however, the addition of an inoculum containing such organisms enabled aerobic degradation to occur. © 2008 Wiley Periodicals, Inc. [source] Remedial options for chlorinated volatile organics in a partially anaerobic aquiferREMEDIATION, Issue 4 2004Xiujin Qiu A laboratory study was conducted for the selection of appropriate remedial technologies for a partially anaerobic aquifer contaminated with chlorinated volatile organics (VOCs). Evaluation of in situ bioremediation demonstrated that the addition of electron donors to anaerobic microcosms enhanced biological reductive dechlorination of tetrachloroethene (PCE), trichloroethene (TCE), and 1,1,1-trichloroethane (1,1,1-TCA) with half-lives of 20, 22, and 41 days, respectively. Nearly complete reductions of PCE, TCE, 1,1,1-TCA, and the derivative cis-dichloroethene were accompanied by a corresponding increase in chloride concentrations. Accumulation of vinyl chloride, ethene, and ethane was not observed; however, elevated levels of 14CO2 (from 14C-TCE spiked) were recovered, indicating the occurrence of anaerobic oxidation. In contrast, very little degradation of 1,2-dichloropropane (1,2-DCP) and 1,1-dichlorethane (1,1-DCA) was observed in the anaerobic microcosms, but nutrient addition enhanced their degradation in the aerobic biotic microcosms. The aerobic degradation half-lives for 1,2-DCP and 1,1-DCA were 63 and 56 days, respectively. Evaluation of in situ chemical oxidation (ISCO) demonstrated that chelate-modified Fenton's reagent was effective in degrading aqueous-phase PCE, TCE, 1,1,1-TCA, 1,2-DCP, etc.; however, this approach had minimal effects on solid-phase contaminants. The observed oxidant demand was 16 g-H2O2/L-groundwater. The oxidation reaction rates were not highly sensitive to the molar ratio of H2O2:Fe2+:citrate. A ratio of 60:1:1 resulted in slightly faster removal of chemicals of concern (COCs) than those of 12:1:1 and 300:1:1. This treatment resulted in increases in dissolved metals (Ca, Cr, Mg, K, and Mn) and a minor increase of vinyl chloride. Treatment with zero-valent iron (ZVI) resulted in complete dechlorination of PCE, and TCE to ethene and ethane. ZVI treatment reduced 1,1,1-TCA only to 1,1-DCA and chloroethane (CA) but had little effect on reducing the levels of 1,2-DCP, 1,1-DCA, and CA. The longevity test showed that one gram of 325-mesh iron powder was exhausted in reaction with > 22 mL of groundwater. The short life of ZVI may be a barrier to implementation. The ZVI surface reaction rates (ksa) were 1.2 × 10,2 Lm,2h,1, 2 × 10,3 Lm,2h,1, and 1.2 × 10,3 Lm,2h,1 for 1,1,1-TCA, TCE, and PCE, respectively. Based upon the results of this study, in situ bioremediation appeared to be more suitable than ISCO and ZVI for effectively treating the groundwater contamination at the site. © 2004 Wiley Periodicals, Inc. [source] Anaerobic mineralization of pentachlorophenol (PCP) by combining PCP-dechlorinating and phenol-degrading culturesBIOTECHNOLOGY & BIOENGINEERING, Issue 1 2009Suyin Yang Abstract The dechlorination and mineralization of pentachlorophenol (PCP) was investigated by simultaneously or sequentially combining two different anaerobic microbial populations, a PCP-dechlorinating culture capable of the reductive dechlorination of PCP to phenol and phenol- degrading cultures able to mineralize phenol under sulfate- or iron-reducing conditions. In the simultaneously combined mixture, PCP (about 35 µM) was mostly dechlorinated to phenol after incubation for 17 days under sulfate-reducing conditions or for 22 days under iron-reducing conditions. Thereafter, the complete removal of phenol occurred within 40 days under both conditions. In the sequentially combined mixture, most of the phenol, the end product of PCP dechlorination, was degraded within 12 days of inoculation with the phenol degrader, without a lag phase, under both sulfate- and iron-reducing conditions. In a radioactivity experiment, [14C,U],PCP was mineralized to 14CO2 and 14CH4 by the combined anaerobic microbial activities. Analysis of electron donor and acceptor utilization and of the production and consumption of H2, CO2, and CH4 suggested that the dechlorinating and degrading microorganisms compete with other microorganisms to perform PCP dechlorination and part of the phenol degradation in complex anoxic environments in the presence of electron donors and acceptors. The presence of a small amount of autoclaved soil slurry in the medium was possibly another advantageous factor in the successful dechlorination and mineralization of PCP by the combined mixtures. This anaerobic,anaerobic combination technology holds great promise as a cost-effective strategy for complete PCP bioremediation in situ. Biotechnol. Bioeng. 2009;102: 81,90. © 2008 Wiley Periodicals, Inc. [source] Electrocatalytic Dechlorination of Chloroform in Aqueous Solution on Palladium/Titanium ElectrodeCHEMICAL ENGINEERING & TECHNOLOGY (CET), Issue 1 2009Z. Sun Abstract Electrochemical dechlorination of chloroform in aqueous solution was investigated on a palladium-loaded meshed titanium electrode at ambient temperature. The palladium/titanium (Pd/Ti) electrode, which provided a catalytic surface for reductive dechlorination of chloroform in aqueous solution, was prepared with an electrodepositing method. Scanning electron microscope (SEM) micrographs show that Pd microparticles uniformly disperse on the meshed Ti electrode with spheroidal structure. Dechlorination experimental results indicate that, in aqueous solution with the high current efficiency of 33,%, the removal efficiency of chloroform on the Pd/Ti electrode was 37,%, under the conditions of a dechlorination current of 0.1,mA and dechlorination time of 180,min. [source] |