Redox States (redox + states)

Distribution by Scientific Domains


Selected Abstracts


Characterization of a nif-regulated flavoprotein (FprA) from Rhodobacter capsulatus

FEBS JOURNAL, Issue 3 2000
2S] ferredoxin, Redox properties, molecular interaction with a [2Fe
A flavoprotein from Rhodobacter capsulatus was purified as a recombinant (His)6 -tag fusion from an Escherichia coli clone over-expressing the fprA structural gene. The FprA protein is a homodimer containing one molecule of FMN per 48-kDa monomer. Reduction of the flavoprotein by dithionite showed biphasic kinetics, starting with a fast step of semiquinone (SQ) formation, and followed by a slow reduction of the SQ. This SQ was in the anionic form as shown by EPR and optical spectroscopies. Spectrophotometric titration gave a midpoint redox potential for the oxidized/SQ couple of Em1 = +20 mV (pH 8.0), whereas the SQ/hydroquinone couple could not be titrated due to the thermodynamic instability of SQ associated with its slow reduction process. The inability to detect the intermediate form, SQ, upon oxidative titration confirmed this instability and led to an estimate of Em2 , Em1 of > 80 mV. The reduction of SQ by dithionite was significantly accelerated when the [2Fe,2S] ferredoxin FdIV was used as redox mediator. The midpoint redox potential of this ferredoxin was determined to be ,275 ± 2 mV at pH 7.5, consistent with FdIV serving as electron donor to FprA in vivo. FdIV and FprA were found to cross-react when incubated together with the 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide, giving a covalent complex with an Mr of , 60 000. Formation of this complex was unaffected by the redox states of the two proteins. Other [2Fe,2S] ferredoxins, including FdV and FdVI from R. capsulatus, were ineffective as electron carriers to FprA, and cross-reacted poorly with the flavoprotein. The possible function of FprA with regard to nitrogen fixation was investigated using an fprA -deleted mutant. Although nitrogenase activity was significantly reduced in the mutant compared with the wild-type strain, nitrogen fixation was apparently unaffected by the fprA deletion even under iron limitation or microaerobic conditions. [source]


Highly Emissive and Electrochemically Stable Thienylene Vinylene Oligomers and Copolymers: An Unusual Effect of Alkylsulfanyl Substituents

ADVANCED FUNCTIONAL MATERIALS, Issue 10 2010
Shehzad Jeeva
Abstract The synthesis, unexpected efficient photoluminescence, and reversible electrochemical p- and n-doping of new conjugated thienylene vinylene materials functionalized with alkylsulfanyl substituents poly(trithienylene vinylene) (PTTV) and poly(dithienylvinyl- co -benzothiadiazole) (PDTVB) along with dithienylvinylene-based oligomers is reported. The materials are studied by thermal and X-ray diffraction analysis, optical spectroscopy, cyclic voltammetry, and spectroelectrochemistry. Organic field-effect transistors (OFETs) are fabricated with PTTV and PDTVB. The polymers, prepared by Stille polycondensation, exhibit good thermal stability and a photoluminescent quantum yield in the range 34%,68%. Low bandgaps (1.5,1.8,eV), estimated by optical and electrochemical measurements along with high stability of both redox states, suggest that these structures are promising materials for photovoltaic applications. OFETs fabricated with PDTVB reveal a hole mobility of 7,×,10,3,cm2 V,1 s,1 with on/off ratio 105, which are comparatively high values for completely amorphous polymer semiconductors. [source]


Single sample extraction protocol for the quantification of NAD and NADH redox states in Saccharomyces cerevisiae

JOURNAL OF SEPARATION SCIENCE, JSS, Issue 18 2008
Jennifer L. Sporty
Abstract A robust redox extraction protocol for quantitative and reproducible metabolite isolation and recovery has been developed for simultaneous measurement of nicotinamide adenine dinucleotide (NAD) and its reduced form, NADH, from Saccharomyces cerevisiae. Following culture in liquid media, yeast cells were harvested by centrifugation and then lysed under nonoxidizing conditions by bead blasting in ice-cold, nitrogen-saturated 50 mM ammonium acetate. To enable protein denaturation, ice cold nitrogen-saturated CH3CN/50 mM ammonium acetate (3:1 v/v) was added to the cell lysates. Chloroform extractions were performed on supernatants to remove organic solvent. Samples were lyophilized and resuspended in 50 mM ammonium acetate. NAD and NADH were separated by HPLC and quantified using UV,Vis absorbance detection. NAD and NADH levels were evaluated in yeast grown under normal (2% glucose) and calorie restricted (0.5% glucose) conditions. Results demonstrate that it is possible to perform a single preparation to reliably and robustly quantitate both NAD and NADH contents in the same sample. Robustness of the protocol suggests it will be (i) applicable to quantification of these metabolites in other cell cultures; and (ii) amenable to isotope labeling strategies to determine the relative contribution of specific metabolic pathways to total NAD and NADH levels in cell cultures. [source]


On-line optical and X-ray spectroscopies with crystallography: an integrated approach for determining metalloprotein structures in functionally well defined states

JOURNAL OF SYNCHROTRON RADIATION, Issue 5 2008
Mark J. Ellis
X-ray-induced redox changes can lead to incorrect assignments of the functional states of metals in metalloprotein crystals. The need for on-line monitoring of the status of metal ions (and other chromophores) during protein crystallography experiments is of growing importance with the use of intense synchrotron X-ray beams. Significant efforts are therefore being made worldwide to combine different spectroscopies in parallel with X-ray crystallographic data collection. Here the implementation and utilization of optical and X-ray absorption spectroscopies on the modern macromolecular crystallography (MX) beamline 10, at the SRS, Daresbury Laboratory, is described. This beamline is equipped with a dedicated monolithic energy-dispersive X-ray fluorescence detector, allowing X-ray absorption spectroscopy (XAS) measurements to be made in situ on the same crystal used to record the diffraction data. In addition, an optical microspectrophotometer has been incorporated on the beamline, thus facilitating combined MX, XAS and optical spectroscopic measurements. By uniting these techniques it is also possible to monitor the status of optically active and optically silent metal centres present in a crystal at the same time. This unique capability has been applied to observe the results of crystallographic data collection on crystals of nitrite reductase from Alcaligenes xylosoxidans, which contains both type-1 and type-2 Cu centres. It is found that the type-1 Cu centre photoreduces quickly, resulting in the loss of the 595,nm peak in the optical spectrum, while the type-2 Cu centre remains in the oxidized state over a much longer time period, for which independent confirmation is provided by XAS data as this centre has an optical spectrum which is barely detectable using microspectrophotometry. This example clearly demonstrates the importance of using two on-line methods, spectroscopy and XAS, for identifying well defined redox states of metalloproteins during crystallographic data collection. [source]


Catalytic effect of ferricyanide between myoglobin and luminol and effect of temperature

LUMINESCENCE: THE JOURNAL OF BIOLOGICAL AND CHEMICAL LUMINESCENCE, Issue 2 2007
Xin Gao
Abstract Specific catalytic oxidation of oxymyoglobin (MbO2) and luminol by ferricyanide was studied in a flow-injection system. MbO2 in different redox states (ferric and ferrous) was oxidized to Mb(FeIII) by ferricyanide, and then specific binding of the ferrocyanide anion to Mb(FeIII) to the His 119 (GH1) region accelerated the electron transfer between Mb(FeIII) and luminol, which produced a chemiluminescence (CL) signal at 425 nm. The increased CL emission was correlated with the myoglobin concentration in the range 0.16,7.5 µg/mL. Thermogravimetry and differential scanning calorimetry were used to investigate the temperature effects on this reaction. The results showed that the CL intensity in the presence of myoglobin changed considerably with heating in the range 15,50°C, and the maximal CL intensity was observed at 40°C, corresponding to the glass transition temperature of myoglobin. The effect of different ligands and interferences were also studied. Copyright © 2006 John Wiley & Sons, Ltd. [source]


Fast structural dynamics in reduced and oxidized cytochrome c

PROTEIN SCIENCE, Issue 3 2009
Weixia Liu
Abstract The sub-nanosecond structural dynamics of reduced and oxidized cytochrome c were characterized. Dynamic properties of the protein backbone measured by amide 15N relaxation and side chains measured by the deuterium relaxation of methyl groups change little upon change in the redox state. These results imply that the solvent reorganization energy associated with electron transfer is small, consistent with previous theoretical analyses. The relative rigidity of both redox states also implies that dynamic relief of destructive electron transfer pathway interference is not operational in free cytochrome c. [source]


Mechanism of Laccase,TEMPO-Catalyzed Oxidation of Benzyl Alcohol

CHEMCATCHEM, Issue 7 2010
Sander
Abstract The oxidation of benzyl alcohol by air, catalyzed by the organocatalyst TEMPO and the enzyme laccase has been investigated. To establish the kinetically significant pathways and corresponding kinetic parameters, a series of experiments is conducted with synthesized stable oxidized and reduced forms of the organocatalyst, the oxoammonium cation, and hydroxylamine. The time course of TEMPO and its oxidized and reduced derivatives is monitored off line by a combination of GC analysis, UV/Vis spectroscopy, EPR spectroscopy, and FTIR spectroscopy. TEMPO is found to be regenerated through noncatalyzed comproportionation of the oxoammonium cation with hydroxylamine. A kinetic model is presented based on the experimentally determined kinetically significant pathways. The time dependences of the concentrations of the three redox states of TEMPO and benzyl alcohol are adequately described by the model. The results provide new leads for the development of a practical process for a combined laccase,TEMPO-catalyzed selective oxidation of alcohols. [source]