Home About us Contact | |||
Redox Sites (redox + site)
Selected AbstractsTowards Protein Field-Effect Transistors: Report and Model of a Prototype,ADVANCED MATERIALS, Issue 7 2005G. Maruccio A protein field-effect transistor (Pro-FET) based on the blue-copper protein azurins (see Figure) and operating at room temperature and ambient pressure is demonstrated. The transfer characteristics of the Pro-FET exhibit a pronounced resonance due to the switch from behaving as a n-metal oxide semiconductor FET (n-MOSFET) to a p-MOSFET. Carrier transport through the device is explained in terms of an equilibrium between the two possible oxidation states of the redox site (Cu1+ and Cu2+). [source] Functional properties of the protein disulfide oxidoreductase from the archaeon Pyrococcus furiosusFEBS JOURNAL, Issue 16 2004A member of a novel protein family related to protein disulfide-isomerase Protein disulfide oxidoreductases are ubiquitous redox enzymes that catalyse dithiol,disulfide exchange reactions with a CXXC sequence motif at their active site. A disulfide oxidoreductase, a highly thermostable protein, was isolated from Pyrococcus furiosus (PfPDO), which is characterized by two redox sites (CXXC) and an unusual molecular mass. Its 3D structure at high resolution suggests that it may be related to the multidomain protein disulfide-isomerase (PDI), which is currently known only in eukaryotes. This work focuses on the functional characterization of PfPDO as well as its relation to the eukaryotic PDIs. Assays of oxidative, reductive, and isomerase activities of PfPDO were performed, which revealed that the archaeal protein not only has oxidative and reductive activity, but also isomerase activity. On the basis of structural data, two single mutants (C35S and C146S) and a double mutant (C35S/C146S) of PfPDO were constructed and analyzed to elucidate the specific roles of the two redox sites. The results indicate that the CPYC site in the C-terminal half of the protein is fundamental to reductive/oxidative activity, whereas isomerase activity requires both active sites. In comparison with PDI, the ATPase activity was tested for PfPDO, which was found to be cation-dependent with a basic pH optimum and an optimum temperature of 90 °C. These results and an investigation on genomic sequence databases indicate that PfPDO may be an ancestor of the eukaryotic PDI and belongs to a novel protein disulfide oxidoreductase family. [source] Radical Polymers for Organic Electronic Devices: A Radical Departure from Conjugated Polymers?ADVANCED MATERIALS, Issue 22 2009Kenichi Oyaizu Abstract Radical polymers are aliphatic or nonconjugated polymers bearing organic robust radicals as pendant groups per repeating unit. A large population of the radical redox sites allows the efficient redox gradient-driven electron transport through the polymer layer by outer-sphere self-exchange reactions in electrolyte solutions. The radical polymers are emerging as a new class of electroactive materials useful for various kinds of wet-type energy storage, transport, and conversion devices. Electric-field-driven charge transport by hopping between the densely populated radical sites is also a remarkable aspect of the radical polymers in the solid state, which leads to many dry-type devices such as organic memories, diodes, and switches. [source] CxxS: Fold-independent redox motif revealed by genome-wide searches for thiol/disulfide oxidoreductase functionPROTEIN SCIENCE, Issue 10 2002Dmitri E. Fomenko Abstract Redox reactions involving thiol groups in proteins are major participants in cellular redox regulation and antioxidant defense. Although mechanistically similar, thiol-dependent redox processes are catalyzed by structurally distinct families of enzymes, which are difficult to identify by available protein function prediction programs. Herein, we identified a functional motif, CxxS (cysteine separated from serine by two other residues), that was often conserved in redox enzymes, but rarely in other proteins. Analyses of complete Escherichia coli, Campylobacter jejuni, Methanococcus jannaschii, and Saccharomyces cerevisiae genomes revealed a high proportion of proteins known to use the CxxS motif for redox function. This allowed us to make predictions in regard to redox function and identity of redox groups for several proteins whose function previously was not known. Many proteins containing the CxxS motif had a thioredoxin fold, but other structural folds were also present, and CxxS was often located in these proteins upstream of an ,-helix. Thus, a conserved CxxS sequence followed by an ,-helix is typically indicative of a redox function and corresponds to thiol-dependent redox sites in proteins. The data also indicate a general approach of genome-wide identification of redox proteins by searching for simple conserved motifs within secondary structure patterns. [source] |