Redox Changes (redox + change)

Distribution by Scientific Domains


Selected Abstracts


Transformation of Double Hydrogen-Bonding Motifs of TTF-Uracil System by Redox Change.

CHEMINFORM, Issue 12 2006
Eigo Miyazaki
Abstract ChemInform is a weekly Abstracting Service, delivering concise information at a glance that was extracted from about 200 leading journals. To access a ChemInform Abstract, please click on HTML or PDF. [source]


Functional analysis of rice NPR1 -like genes reveals that OsNPR1/NH1 is the rice orthologue conferring disease resistance with enhanced herbivore susceptibility,

PLANT BIOTECHNOLOGY JOURNAL, Issue 2 2007
Yuexing Yuan
Summary The key regulator of salicylic acid (SA)-mediated resistance, NPR1, is functionally conserved in diverse plant species, including rice (Oryza sativa L.). Investigation in depth is needed to provide an understanding of NPR1 -mediated resistance and a practical strategy for the improvement of disease resistance in the model crop rice. The rice genome contains five NPR1 -like genes. In our study, three rice homologous genes, OsNPR1/NH1, OsNPR2/NH2 and OsNPR3, were found to be induced by rice bacterial blight Xanthomonas oryzae pv. oryzae and rice blast Magnaporthe grisea, and the defence molecules benzothiadiazole, methyl jasmonate and ethylene. We confirmed that OsNPR1 is the rice orthologue by complementing the Arabidopsis npr1 mutant. Over-expression of OsNPR1 conferred disease resistance to bacterial blight, but also enhanced herbivore susceptibility in transgenic plants. The OsNPR1-green fluorescent protein (GFP) fusion protein was localized in the cytoplasm and moved into the nucleus after redox change. Mutations in its conserved cysteine residues led to the constitutive localization of OsNPR1(2CA)-GFP in the nucleus and also abolished herbivore hypersensitivity in transgenic rice. Different subcellular localizations of OsNPR1 antagonistically regulated SA- and jasmonic acid (JA)-responsive genes, but not SA and JA levels, indicating that OsNPR1 might mediate antagonistic cross-talk between the SA- and JA-dependent pathways in rice. This study demonstrates that rice has evolved an SA-mediated systemic acquired resistance similar to that in Arabidopsis, and also provides a practical approach for the improvement of disease resistance without the penalty of decreased herbivore resistance in rice. [source]


Misregulation of gene expression in the redox-sensitive NF-,b-dependent limb outgrowth pathway by thalidomide

DEVELOPMENTAL DYNAMICS, Issue 2 2002
Jason M. Hansen
Abstract Thalidomide is known to induce oxidative stress, but mechanisms have not been described through which oxidative stress could contribute to thalidomide-induced terata. Oxidative stress modulates intracellular glutathione (GSH) and redox status and can perturb redox-sensitive processes, such as transcription factor activation and/or binding. Nuclear factor-kappa B (NF-,B), a redox-sensitive transcription factor involved in limb outgrowth, may be modulated by thalidomide-induced redox shifts. Thalidomide-resistant Sprague-Dawley rat embryos (gestation day [GD] 13) treated with thalidomide in utero showed no changes in GSH distribution in the limb but thalidomide-sensitive New Zealand White rabbit embryos (GD 12) showed selective GSH depletion in the limb bud progress zone (PZ). NF-,B and regulatory genes that initiate and maintain limb outgrowth and development, such as Twist and Fgf-10, are selectively expressed in the PZ. Green fluorescent protein (GFP) reporter vectors containing NF-,B binding promoter sites were transfected into both rat and rabbit limb bud cells (LBCs). Treatment with thalidomide caused a preferential decrease in GFP expression in rabbit LBCs but not in rat LBCs. N-acetylcysteine and ,-N-t-phenylbutyl nitrone (PBN), a free radical trapping agent, rescued GFP expression in thalidomide-treated cultures compared with cultures that received thalidomide only. In situ hybridization showed a preferential decrease in Twist, Fgf-8, and Fgf-10 expression after thalidomide treatment (400 mg/kg per day) in rabbit embryos. Expression in rat embryos was not affected. Intravenous cotreatment with PBN and thalidomide (gavage) in rabbits restored normal patterns and localization of Twist, Fgf-8, and Fgf-10 expression. These findings show that NF-,B binding is diminished due to selective thalidomide-induced redox changes in the rabbit, resulting in the significant attenuation of expression of genes necessary for limb outgrowth. © 2002 Wiley-Liss, Inc. [source]


Fatty acids increase the circulating levels of oxidative stress factors in mice with diet-induced obesity via redox changes of albumin

FEBS JOURNAL, Issue 15 2007
Mayumi Yamato
Plasma concentrations of free fatty acids are increased in metabolic syndrome, and the increased fatty acids may cause cellular damage via the induction of oxidative stress. The present study was designed to determine whether the increase in fatty acids can modify the free sulfhydryl group in position 34 of albumin (Cys34) and enhance the redox-cycling activity of the copper,albumin complex in high-fat diet-induced obese mice. The mice were fed with commercial normal diet or high-fat diet and water ad libitum for 3 months. The high-fat diet-fed mice developed obesity, hyperlipemia, and hyperglycemia. The plasma fatty acid/albumin ratio also significantly increased in high-fat diet-fed mice. The increased fatty acid/albumin ratio was associated with conformational changes in albumin and the oxidation of sulfhydryl groups. Moreover, an ascorbic acid radical, an index of redox-cycling activity of the copper,albumin complex, was detected only in the plasma from obese mice, whereas the plasma concentrations of ascorbic acid were not altered. Plasma thiobarbituric acid reactive substances were significantly increased in the high-fat diet group. These results indicate that the increased plasma fatty acids in the high-fat diet group resulted in the activated redox cycling of the copper,albumin complex and excessive lipid peroxidation. [source]


Cell Compartmentalization in Redox Signaling

IUBMB LIFE, Issue 1 2001
Giovambattista Pani
Abstract From a growing body of evidence on the role of Reactive Oxygen Species as intracellular signaling molecules, the concept starts to emerge that cell responses to redox changes are function of the intracellular site where oxidants are produced and/or meet their molecular targets. In particular,a major distinction between oxidative events in the cytosolic versus the mitochondrial compartment appears to exist in terms of physiological stimuli, signaling mechanisms and functional consequences. Experimental data supporting this view are reviewed here, and the potential implications of this new perspective in redox signaling are discussed. [source]


Adduct-forming tendencies of cationic triarylmethane dyes with proteins: Metabolic and toxicological implications

JOURNAL OF BIOCHEMICAL AND MOLECULAR TOXICOLOGY, Issue 5 2004
Özden Tacal
Abstract The formation of colorless adducts by four cationic triarylmethane dyes (TAM+s), methyl green (MeG+), malachite green (MG+), pararosaniline (PR+), and crystal violet (CV+) was studied spectrophotometrically at 25°C, in 50 mM 3-(N-morpholino)propanesulfonic acid (MOPS) buffer (pH 8), by monitoring the loss in TAM+ color in the absence and presence of human serum proteins as potential addends. Unfractionated serum caused a rapid bleaching of MeG+ and MG+, while PR+ and CV+ were unaffected. Sephacryl S200 HR chromatographic screening of the serum revealed two composite peaks of MeG+ -bleaching activity. The major peak (Mr range, 40,000,130,000) overlapped with and extended on either side of the albumin peak. The minor peak corresponding to ca. 10% of the total MeG+ -bleaching capacity had Mr > 230,000. MG+ -bleaching activity dominated the entire chromatographic profile and implicated a multitude of minority proteins with a high capacity to form colorless MG adducts. It is concluded that highly electrophilic TAM+s such as MeG+ and MG+ must be quantitatively trapped in the form of dye,protein adducts in biological fluids and that the primary in vivo effects (e.g. toxicity) of such dyes most likely arise from ligand-type effects on multiple protein targets. Mechanisms that call for unmodified TAM+ structure (radical-mediated redox changes, DNA intercalation) may be more relevant to the in vivo impact of dyes such as PR+ and CV+ that have a lower tendency to form adducts. © 2004 Wiley Periodicals, Inc. J Biochem Mol Toxicol 18:253,256, 2004 Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/jbt.20034 [source]


Differential expression of proteins in kidney, eye, aorta, and serum of diabetic and non-diabetic rats

JOURNAL OF CELLULAR BIOCHEMISTRY, Issue 1 2006
William C. Cho
Abstract Diabetes mellitus (DM) is a chronic progressive disease that often results in microvascular and macrovascular complications, yet its pathogenesis is not clear. Automated proteomic technology, coupled with powerful bioinformatics and statistical tools, can provide new insights into the molecular alterations implicated in DM. Following our previous findings of redox changes in the eye and aorta of diabetic rats, as well as the activities of different antioxidant enzymes during the development of DM, this study is further launched to find potential biomarkers by comparing the serum and tissue samples of 26 diabetic rats (8 weeks after streptozotocin [STZ] administration) with 29 normal controls using surface enhanced laser desorption/ionization time-of-flight mass spectrometry (SELDI-TOF MS) technology. Eight potential biomarkers were found in the serum, one potential biomarker was found in the kidney and eye, respectively, whereas three potential biomarkers were discovered in the aorta. One of the serum biomarker candidates was found to match the C-reactive protein (CRP) in the Swiss-Prot knowledgebase. Further validation has been conducted by ELISA kit to confirm the role of CRP during the development of DM. To conclude, the increased level of CRP in diabetic serum demonstrated in this study indicates that the development of DM is associated with inflammation. This is also the first report demonstrating that some potential lysate biomarkers in the kidney, eye, and aorta may be involved in the development of diabetes and its complications. Further identification and evaluation of these potential biomarkers will help unravel the underlying mechanisms of the disease. J. Cell. Biochem. © 2006 Wiley-Liss, Inc. [source]


On-line optical and X-ray spectroscopies with crystallography: an integrated approach for determining metalloprotein structures in functionally well defined states

JOURNAL OF SYNCHROTRON RADIATION, Issue 5 2008
Mark J. Ellis
X-ray-induced redox changes can lead to incorrect assignments of the functional states of metals in metalloprotein crystals. The need for on-line monitoring of the status of metal ions (and other chromophores) during protein crystallography experiments is of growing importance with the use of intense synchrotron X-ray beams. Significant efforts are therefore being made worldwide to combine different spectroscopies in parallel with X-ray crystallographic data collection. Here the implementation and utilization of optical and X-ray absorption spectroscopies on the modern macromolecular crystallography (MX) beamline 10, at the SRS, Daresbury Laboratory, is described. This beamline is equipped with a dedicated monolithic energy-dispersive X-ray fluorescence detector, allowing X-ray absorption spectroscopy (XAS) measurements to be made in situ on the same crystal used to record the diffraction data. In addition, an optical microspectrophotometer has been incorporated on the beamline, thus facilitating combined MX, XAS and optical spectroscopic measurements. By uniting these techniques it is also possible to monitor the status of optically active and optically silent metal centres present in a crystal at the same time. This unique capability has been applied to observe the results of crystallographic data collection on crystals of nitrite reductase from Alcaligenes xylosoxidans, which contains both type-1 and type-2 Cu centres. It is found that the type-1 Cu centre photoreduces quickly, resulting in the loss of the 595,nm peak in the optical spectrum, while the type-2 Cu centre remains in the oxidized state over a much longer time period, for which independent confirmation is provided by XAS data as this centre has an optical spectrum which is barely detectable using microspectrophotometry. This example clearly demonstrates the importance of using two on-line methods, spectroscopy and XAS, for identifying well defined redox states of metalloproteins during crystallographic data collection. [source]


Differentiation between electron transport sensing and proton motive force sensing by the Aer and Tsr receptors for aerotaxis

MOLECULAR MICROBIOLOGY, Issue 3 2006
Jessica C. Edwards
Summary Aerotaxis (oxygen-seeking) behaviour in Escherichia coli is a response to changes in the electron transport system and not oxygen per se. Because changes in proton motive force (PMF) are coupled to respiratory electron transport, it is difficult to differentiate between PMF, electron transport or redox, all primary candidates for the signal sensed by the aerotaxis receptors, Aer and Tsr. We constructed electron transport mutants that produced different respiratory H+/e, stoichiometries. These strains expressed binary combinations of one NADH dehydrogenase and one quinol oxidase. We then introduced either an aer or tsr mutation into each mutant to create two sets of electron transport mutants. In vivo H+/e, ratios for strains grown in glycerol medium ranged from 1.46 ± 0.18,3.04 ± 0.47, but rates of respiration and growth were similar. The PMF jump in response to oxygen was proportional to the H+/e, ratio in each set of mutants (r2 = 0.986,0.996). The length of Tsr-mediated aerotaxis responses increased with the PMF jump (r2 = 0.988), but Aer-mediated responses did not correlate with either PMF changes (r2 = 0.297) or the rate of electron transport (r2 = 0.066). Aer-mediated responses were linked to NADH dehydrogenase I, although there was no absolute requirement. The data indicate that Tsr responds to changes in PMF, but strong Aer responses to oxygen are associated with redox changes in NADH dehydrogenase I. [source]