Home About us Contact | |||
Recovery Behavior (recovery + behavior)
Selected AbstractsInteraction of exchange and differential relaxation in the saturation recovery behavior of the binary spin-bath model for magnetization transferCONCEPTS IN MAGNETIC RESONANCE, Issue 4 2006Gunther Helms Abstract Most closed-form analytical solutions of the binary spin-bath are difficult to interpret in terms of underlying physics. The key notions are the presence of a kinetic and a thermal equilibrium and that the time course of saturation recovery under conditions of fast exchange can be understood as conjoint relaxation and lossless transfer. By introducing a suitable parameter, it is shown how exchange and differential relaxation counteract each other: the amount of transferred saturation (transfer term) is altered and the kinetic equilibrium appears slightly disturbed (difference term). Although the factorization formally represents the general solution of saturation recovery in the binary spin-bath, this interpretation applies only to the case of fast exchange and slow relaxation. By calculating the set of parameters for a wide range of hypothetical relaxation rates, it was shown that the difference term is crucial to describe the transition to the slow-exchange limit. The transfer term vanishes as the two pools appear decoupled in this approximation. © 2006 Wiley Periodicals, Inc. Concepts Magn Reson Part A 28A: 291,298, 2006. [source] Creep and recovery behavior of novel organic-inorganic polymer hybridsPOLYMER COMPOSITES, Issue 2 2002Sunil B. Adalja A novel class of organic-inorganic polymer hybrids were developed by meltblending up to 50 (v/v) % [about 83 (w/w) %] tin-based polyphosphate glass (Pglass) and low-density polyethylene (LDPE) in conventional plastics processing equipment. The creep and recovery behavior of these polymer hybrids at 30°C were studied to understand the effect of the Pglass on the creep resistance of the LDPE. The results suggest that the Pglass acts as a reinforcement and an increase in the Pglass loading leads to significantly lower creep strains. This creep resistance is further enhanced by pretreating the Pglass with coupling agents prior to incorporating them into the Pglass-LDPE hybrids. The experimental creep compliance of these materials conformed excellently with empirical power-law equation and a modified Burger's model, suggesting that the materials are linearly viscoelastic under the test conditions. [source] Essential work of fracture (EWF) analysis for compression molded alternating poly(propylene carbonate)POLYMER ENGINEERING & SCIENCE, Issue 3 2004K. L. Fung In this investigation, the main objective was to study the mechanical properties of alternating poly(propylene carbonate) copolymer (PPC). The PPC used in this study was derived from propylene oxide and carbon dioxide using zinc glutarate as catalyst. The molecular weight of the PPC copolymer used in this study has M,n,33,000. The synthesized PPC was compression molded into sheets of thickness ,1mm. The fracture toughness of the PPC films was determined using the essential work of fracture (EWF) technique, at a laboratory temperature of 20°C, and a loading rate of 1 mm/min. During the EWF measurement, a significant amount of plastic deformation has taken place around the initial ligament region. The measured specific total fracture work (wf) was observed to vary in a linear fashion with the specimen ligament (l), and hence satisfied the basic requirement for EWF analysis. The specific essential fracture work (we) for the PPC film was measured to be 11.0 kJ/m2. The PPC showed a prominent recovery behavior. The severely deformed region surrounding the fracture ligament was observed to recover completely 8 days after fracture testing. Polym. Eng. Sci. 44:580,587, 2004. © 2004 Society of Plastics Engineers. [source] |