Recognition Helix (recognition + helix)

Distribution by Scientific Domains


Selected Abstracts


Missense mutations of human homeoboxes: A review

HUMAN MUTATION, Issue 5 2001
Angela V. D'Elia
Abstract The homeodomain (encoded by the homeobox) is the DNA-binding domain of a large variety of transcriptional regulators involved in controlling cell fate decisions and development. Mutations of homeobox-containing genes cause several diseases in humans. A variety of missense mutations giving rise to human diseases have been described. These mutations are an excellent model to better understand homeodomain molecular functions. To this end, homeobox missense mutations giving rise to human diseases are reviewed. Seventy-four independent homeobox mutations have been observed in 17 different genes. In the same genes, 30 missense mutations outside the homeobox have been observed, indicating that the homeodomain is more easily affected by single amino acids changes than the rest of the protein. Most missense mutations have dominant effects. Several data indicate that dominance is mostly due to haploinsufficiency. Among proteins having the homeodomain as the only DNA-binding domain, three "hot spot" regions can be delineated: 1) at codon encoding for Arg5; 2) at codon encoding for Arg31; and 3) at codons encoding for amino acids of recognition helix. In the latter, mutations at codons encoding for Arg residues at positions 52 and 53 are prevalent. In the recognition helix, Arg residues at positions 52 and 53 establish contacts with phosphates in the DNA backbone. Missense mutations of amino acids that contribute to sequence discrimination (such as those at positions 50 and 54) are present only in a minority of cases. Similar data have been obtained when missense mutations of proteins possessing an additional DNA-binding domain have been analyzed. The only exception is observed in the POU1F1 (PIT1) homeodomain, in which Arg58 is a "hot spot" for mutations, but is not involved in DNA recognition. Hum Mutat 18:361,374, 2001. © 2001 Wiley-Liss, Inc. [source]


Characterization of TetD as a transcriptional activator of a subset of genes of the Escherichia coli SoxS/MarA/Rob regulon

MOLECULAR MICROBIOLOGY, Issue 4 2005
Kevin L. Griffith
Summary In Escherichia coli, SoxS, MarA and Rob form a closely related subset of the AraC/XylS family of positive regulators, sharing ,42% amino acid sequence identity over the length of SoxS and the ability to activate transcription of a common set of target genes that provide resistance to redox-cycling compounds and antibiotics. On the basis of its ,43% amino acid sequence identity with SoxS, MarA and Rob, TetD, encoded by transposon Tn10, appears to be a fourth member of the subset. However, although its expression has been shown to be negatively regulated by TetC and not inducible by tetracycline, the physiological function of TetD is unknown. Accordingly, in the work presented here, we initiate a molecular characterization of TetD. We show that expression of TetD activates transcription of a subset of the SoxS/MarA/Rob regulon genes and confers resistance to redox-cycling compounds and antibiotics. We show that mutations in the putative TetD binding site of a TetD-activatable promoter and a mutation in the protein's N-terminal DNA recognition helix interfere with transcription activation, thereby indicating that TetD directly activates target gene transcription. Finally, we show that TetD, like SoxS and MarA, is intrinsically unstable; however, unlike SoxS and MarA, TetD is not degraded by Lon or any of the cell's known cytoplasmic ATP-dependent proteases. Thus, we conclude that TetD is a bona fide member of the SoxS/MarA/Rob subfamily of positive regulators. [source]


Spo0A directly controls the switch from acid to solvent production in solvent-forming clostridia

MOLECULAR MICROBIOLOGY, Issue 5 2000
Adriana Ravagnani
The spo0A genes of Clostridium beijerinckii NCIMB 8052 and Clostridium cellulolyticum ATCC 35319 were isolated and characterized. The C-terminal DNA-binding domains of the predicted products of spo0A from these two organisms, as well as 16 other taxonomically diverse species of Bacillus and Clostridium, show extensive amino acid sequence conservation (56% identity, 65% similarity over 104 residues). A 12-amino-acid motif (SRVERAIRHAIE) that forms the putative DNA recognition helix is particularly highly conserved, suggesting a common DNA target. Insertional inactivation of spo0A in C. beijerinckii blocked the formation of solvents (as well as spores and granulose). Sequences resembling Spo0A-binding motifs (TGNCGAA) are found in the promoter regions of several of the genes whose expression is modulated at the onset of solventogenesis in Clostridium acetobutylicum and C. beijerinckii. These include the upregulated adc gene, encoding acetoacetate decarboxylase (EC 4.1.1.4), and the downregulated ptb gene, encoding phosphotransbutyrylase (EC 2.3.1.c). In vitro gel retardation experiments using C. acetobutylicum adc and C. beijerinckii ptb promoter fragments and recombinant Bacillus subtilis and C. beijerinckii Spo0A suggested that adc and ptb are directly controlled by Spo0A. The binding affinity was reduced when the 0A boxes were destroyed, and enhanced when they were modified to conform precisely to the consensus sequence. In vivo analysis of wild-type and mutagenized promoters transcriptionally fused to the gusA reporter gene in C. beijerinckii validated this hypothesis. Post-exponential phase expression from the mutagenized adc promoter was substantially reduced, whereas expression from the mutagenized ptb promoter was not shut down at the end of exponential growth. [source]


A strained DNA binding helix is conserved for site recognition, folding nucleation, and conformational modulation,

BIOPOLYMERS, Issue 6 2009
Diana E. Wetzler
Abstract Nucleic acid recognition is often mediated by ,-helices or disordered regions that fold into ,-helix on binding. A peptide bearing the DNA recognition helix of HPV16 E2 displays type II polyproline (PII) structure as judged by pH, temperature, and solvent effects on the CD spectra. NMR experiments indicate that the canonical ,-helix is stabilized at the N-terminus, while the PII forms at the C-terminus half of the peptide. Re-examination of the dihedral angles of the DNA binding helix in the crystal structure and analysis of the NMR chemical shift indexes confirm that the N-terminus half is a canonical ,-helix, while the C-terminal half adopts a 310 helix structure. These regions precisely match two locally driven folding nucleii, which partake in the native hydrophobic core and modulate a conformational switch in the DNA binding helix. The peptide shows only weak and unspecific residual DNA binding, 104 -fold lower affinity, and 500-fold lower discrimination capacity compared with the domain. Thus, the precise side chain conformation required for modulated and tight physiological binding by HPV E2 is largely determined by the noncanonical strained ,-helix conformation, "presented" by this unique architecture. © 2009 Wiley Periodicals, Inc. Biopolymers 91: 432,443, 2009. This article was originally published online as an accepted preprint. The "Published Online" date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com [source]