Home About us Contact | |||
Receptor Neurons (receptor + neuron)
Kinds of Receptor Neurons Selected AbstractsXath5 regulates neurogenesis in the Xenopus olfactory placodeDEVELOPMENTAL DYNAMICS, Issue 4 2002Carole J. Burns Abstract Helix-loop-helix (HLH) genes function as important regulators of neurogenesis in both the peripheral and central nervous systems. The olfactory system is an ideal tissue in which to study the role of these genes in regulating the acquisition of neuronal cell fate, particularly that of the olfactory receptor neuron (ORN). Here we describe the expression of several basic HLH (bHLH) and repeat HLH (rHLH) factors during olfactory placode development in Xenopus laevis. Our work reveals that a combination of both bHLH and rHLH genes are sequentially expressed within the nascent olfactory placode during normal development. Moreover, overexpression of the bHLH factor, Xenopus atonal homologue 5 (Xath5), promotes olfactory neural fate independent of cellular proliferation within a restricted domain at the anterior of the embryo. Collectively, our data argue that HLH genes are expressed in a cascade during olfactory placode development and that the activity of an atonal homologue, Xath5, can promote ORN fate but only in the appropriate developmental context. © 2002 Wiley-Liss, Inc. [source] GABAB receptor expression and function in olfactory receptor neuron axon growthDEVELOPMENTAL NEUROBIOLOGY, Issue 2 2004Catherine A. Priest Abstract Neurotransmitters have been implicated in regulating growth cone motility and guidance in the developing nervous system. Anatomical and electrophysiological studies show the presence of functional GABAB receptors on adult olfactory receptor neuron (ORN) nerve terminals. Using antisera against the GABAB R1a/b receptor isoforms we show that developing mouse olfactory receptor neurons express GABAB receptors from embryonic day 14 through to adulthood. GABAB receptors are present on axon growth cones from both dissociated ORNs and olfactory epithelial explants. Neurons in the olfactory bulb begin to express glutamic acid decarboxylase (GAD), the synthetic enzyme for GABA, from E16 through to adulthood. When dissociated ORNs were cultured in the presence of the GABAB receptor agonists, baclofen or SKF97541, neurite outgrowth was significantly reduced. Concurrent treatment of the neurons with baclofen and the GABAB receptor antagonist CGP54626 prevented the inhibitory effects of baclofen on ORN neurite outgrowth. These results show that growing ORN axons express GABAB receptors and are sensitive to the effects of GABAB receptor activation. Thus, ORNs in vivo may detect GABA release from juxtaglomerular cells as they enter the glomerular layer and use this as a signal to limit their outgrowth and find synaptic targets in regeneration and development. © 2004 Wiley Periodicals, Inc. J Neurobiol 60:154,165, 2004 [source] Involvement of adenylate cyclase and tyrosine kinase signaling pathways in response of crayfish stretch receptor neuron and satellite glia cell to photodynamic treatmentGLIA, Issue 3 2005Anatoly Uzdensky Abstract Neuroglial interactions are most profound during development or damage of nerve tissue. We studied the responses of crayfish stretch receptor neurons (SRN) and satellite glial cells to photosensitization with sulfonated aluminum phthalocyanine Photosens. Although Photosens was localized mainly in the glial envelope, neurons were very sensitive to photodynamic treatment. Photosensitization gradually inhibited and then abolished neuron activity. Neuronal and glial nuclei shrank. Some neurons and glial cells lost the integrity of the plasma membrane and died through necrosis after the treatment. The nuclei of other glial cells but not neurons become fragmented, indicating apoptosis. The number of glial nuclei around neuron soma increased, probably indicating proliferation for enhanced neuron protection. Adenylate cyclase (AC) inhibition by MDL-12330A, or tyrosine kinase (TK) inhibition by genistein, shortened neuron lifetime, whereas AC activation by forskolin or protein tyrosine phosphatases (PTP) inhibition by sodium orthovanadate prolonged neuronal activity. Therefore, cAMP and phosphotyrosines produced by AC and TK, respectively, protected SRN against photoinactivation. AC inhibition reduced photodamage of the plasma membrane and subsequent necrosis in neuronal and glial cells. AC activation prevented apoptosis in photosensitized glial cells and stimulated glial proliferation. TK inhibition protected neurons but not glia against photoinduced membrane permeabilization and subsequent necrosis whereas PTP inhibition more strongly protected glial cells. Therefore, both signaling pathways involving cAMP and phosphotyrosines might contribute to the maintenance of neuronal activity and the integrity of the neuronal and glial plasma membranes. Adenylate cyclase but not phosphotyrosine signaling pathways modulated glial apoptosis and proliferation under photooxidative stress. © 2004 Wiley-Liss, Inc. [source] Multiple sites of L-histidine decarboxylase expression in mouse suggest novel developmental functions for histamineDEVELOPMENTAL DYNAMICS, Issue 1 2001Kaj Karlstedt Abstract Histamine mediates many types of physiologic signals in multicellular organisms. To clarify the developmental role of histamine, we have examined the developmental expression of L-histidine decarboxylase (HDC) mRNA and the production of histamine during mouse development. The predominant expression of HDC in mouse development was seen in mast cells. The HDC expression was evident from embryonal day 13 (Ed13) until birth, and the mast cells were seen in most peripheral tissues. Several novel sites with a prominent HDC mRNA expression were revealed. In the brain, the choroid plexus showed HDC expression at Ed14 and the raphe neurons at Ed15. Close to the parturition, at Ed19, the neurons in the tuberomammillary (TM) area and the ventricular neuroepithelia also displayed a clear HDC mRNA expression and histamine immunoreactivity (HA-ir). From Ed14 until birth, the olfactory and nasopharyngeal epithelia showed an intense HDC mRNA expression and HA-ir. In the olfactory epithelia, the olfactory receptor neurons (ORN) were shown to have very prominent histamine immunoreactivity. The bipolar nerve cells in the epithelium extended both to the epithelial surface and into the subepithelial layers to be collected into thick nerve bundles extending caudally toward the olfactory bulbs. Also, in the nasopharynx, an extensive subepithelial network of histamine-immunoreactive nerve fibers were seen. Furthermore, in the peripheral tissues, the degenerating mesonephros (Ed14) and the convoluted tubules in the developing kidneys (Ed15) showed HDC expression, as did the prostate gland (Ed15). In adult mouse brain, the HDC expression resembled the neuronal pattern observed in rat brain. The expression was restricted to the TM area in the ventral hypothalamus, with the main expression in the five TM subgroups called E1,E5. A distinct mouse HDC mRNA expression was also seen in the ependymal wall of the third ventricle, which has not been reported in the rat. The tissue- and cell-specific expression patterns of HDC and histamine presented in this work indicate that histamine could have cell guidance or regulatory roles in development. © 2001 Wiley-Liss, Inc. [source] Phenotypic plasticity in number of glomeruli and sensory innervation of the antennal lobe in leaf-cutting ant workers (A. vollenweideri)DEVELOPMENTAL NEUROBIOLOGY, Issue 4 2010Christina Kelber Abstract In the leaf-cutting ant Atta vollenweideri, the worker caste exhibits a pronounced size-polymorphism, and division of labor is dependent on worker size (alloethism). Behavior is largely guided by olfaction, and the olfactory system is highly developed. In a recent study, two different phenotypes of the antennal lobe of Atta vollenweideri workers were found: MG- and RG-phenotype (with/without a macroglomerulus). Here we ask whether the glomerular numbers are related to worker size. We found that the antennal lobes of small workers contain ,390 glomeruli (low-number; LN-phenotype), and in large workers we found a substantially higher number of ,440 glomeruli (high-number; HN-phenotype). All LN-phenotype workers and some small HN-phenotype workers do not possess an MG (LN-RG-phenotype and HN-RG-phenotype), and the remaining majority of HN-phenotype workers do possess an MG (HN-MG-phenotype). Using mass-staining of antennal olfactory receptor neurons we found that the sensory tracts divide the antennal lobe into six clusters of glomeruli (T1,T6). In LN-phenotype workers, ,50 glomeruli are missing in the T4-cluster. Selective staining of single sensilla and their associated receptor neurons revealed that T4-glomeruli are innervated by receptor neurons from the main type of olfactory sensilla, the Sensilla trichodea curvata. The other type of olfactory sensilla (Sensilla basiconica) exclusively innervates T6-glomeruli. Quantitative analyses of differently sized workers revealed that the volume of T6 glomeruli scales with the power of 2.54 to the number of Sensilla basiconica. The results suggest that developmental plasticity leading to antennal-lobe phenotypes promotes differences in olfactory-guided behavior and may underlie task specialization within ant colonies. © 2009 Wiley Periodicals, Inc. Develop Neurobiol 70: 222,234, 2010. [source] The L1-CAM, Neuroglian, functions in glial cells for Drosophila antennal lobe developmentDEVELOPMENTAL NEUROBIOLOGY, Issue 8 2008Weitao Chen Abstract Although considerable progress has been made in understanding the roles of olfactory receptor neurons (ORNs) and projection neurons (PNs) in Drosophila antennal lobe (AL) development, the roles of glia have remained largely mysterious. Here, we show that during Drosophila metamorphosis, a population of midline glial cells in the brain undergoes extensive cellular remodeling and is closely associated with the collateral branches of ORN axons. These glial cells are required for ORN axons to project across the midline and establish the contralateral wiring in the ALs. We find that Neuroglian (Nrg), the Drosophila homolog of the vertebrate cell adhesion molecule, L1, is expressed and functions in the midline glial cells to regulate their proper development. Loss of Nrg causes the disruption in glial morphology and the agenesis of the antennal commissural tract. Our genetic analysis further demonstrates that the functions of Nrg in the midline glia require its ankyrin-binding motif. We propose that Nrg is an important regulator of glial morphogenesis and axon guidance in AL development. © 2008 Wiley Periodicals, Inc. Develop Neurobiol, 2008. [source] Dissolved copper triggers cell death in the peripheral mechanosensory system of larval fishENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 2 2006Tiffany L. Linbo Abstract Dissolved copper is an increasingly common non,point source contaminant in urban and urbanizing watersheds. In the present study, we investigated the sublethal effects of dissolved copper on the peripheral mechanosensory system, or lateral line, of larval zebrafish (Danio rerio). Zebrafish larvae were exposed to copper (0,65 ,g/L), and the cytotoxic responses of individual lateral line receptor neurons were examined using a combination of in vivo fluorescence imaging, confocal microscopy, scanning electron microscopy, and conventional histology. Dissolved copper triggered a dose-dependent loss of neurons in identified lateral line neuromasts at concentrations ,20 ,g/L. The onset of cell death in the larval mechanosensory system was rapid (<1 h). When copper-exposed zebrafish were transferred to clean water, the lateral line regenerated over the course of 2 d. In contrast, the lateral line of larvae exposed continuously to dissolved copper (50 ,g/L) for 3 d did not recover. Collectively, these results show that peripheral mechanosensory neurons are vulnerable to the neurotoxic effects of copper. Consequently, dissolved copper in non-point source storm-water runoff has the potential to interfere with rheotaxis, schooling, predator avoidance, and other mechanosensory-mediated behaviors that are important for the migration and survival of fish. [source] Adenylyl cyclase encoded by AC78C participates in sugar perception in Drosophila melanogasterEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 10 2008Kohei Ueno Abstract In gustatory receptor neurons (GRNs) in Drosophila melanogaster, Gr5a and one of the Gr64s encode sugar receptors with seven transmembrane domains. Previously, we have shown that the responses to various sugars are depressed in DGs, mutant flies (Ueno et al., 2006). Because DGs, is a homolog of Gs, we hypothesized that the sugar receptors are coupled to adenylyl cyclase (AC) in Drosophila. The aim of this study was to identify the AC that participates in sugar perception. Here, we found that an AC inhibitor, MDL-12330A, depressed the response in GRNs to trehalose as well as sucrose; that an AC gene, AC78C, was expressed in the sugar-sensitive GRNs; that RNAi against AC78C depressed the electrical response in GRNs to sucrose; and that the sugar response in GRNs, as well as sugar intake in a behavioral assay in an AC78C mutant, was depressed at low sugar concentrations. We conclude that AC78C, via cAMP, participates in the sugar-taste signaling pathway at the low concentration range. [source] Plasma membrane Ca2+ -ATPase in the cilia of olfactory receptor neurons: possible role in Ca2+ clearanceEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 9 2007Karen Castillo Abstract Olfactory sensory neurons respond to odorants increasing Ca2+ concentrations in their chemosensory cilia. Calcium enters the cilia through cAMP-gated channels, activating Ca2+ -dependent chloride or potassium channels. Calcium also has a fundamental role in odour adaptation, regulating cAMP turnover rate and the affinity of the cyclic nucleotide-gated channels for cAMP. It has been shown that a Na+/Ca2+ exchanger (NCX) extrudes Ca2+ from the cilia. Here we confirm previous evidence that olfactory cilia also express plasma membrane Ca2+ -ATPase (PMCA), and show the first evidence supporting a role in Ca2+ removal. Both transporters were detected by immunoblot of purified olfactory cilia membranes. The pump was also revealed by immunocytochemistry and immunohistochemistry. Inside-out cilia membrane vesicles transported Ca2+ in an ATP-dependent fashion. PMCA activity was potentiated by luminal Ca2+ (K0.5 = 670 nm) and enhanced by calmodulin (CaM; K0.5 = 31 nm). Both carboxyeosin (CE) and calmidazolium reduced Ca2+ transport, as expected for a CaM-modulated PMCA. The relaxation time constant (,) of the Ca2+ -dependent Cl, current (272 ± 78 ms), indicative of luminal Ca2+ decline, was increased by CE (2181 ± 437 ms), by omitting ATP (666 ± 49 ms) and by raising pH (725 ± 65 ms), suggesting a role of the pump on Ca2+ clearance. Replacement of external Na+ by Li+ had a similar effect (, = 442 ± 8 ms), confirming the NCX involvement in Ca2+ extrusion. The evidence suggests that both Ca2+ transporters contribute to re-establish resting Ca2+ levels in the cilia following olfactory responses. [source] Urinary pheromones promote ERK/Akt phosphorylation, regeneration and survival of vomeronasal (V2R) neuronsEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 12 2006Jing Xia Abstract The G protein-coupled pheromone receptor neurons (V1R and V2R) of the vomeronasal organ (VNO) are continually replaced throughout the lifetime of the mouse. Moreover, active signalling of V2Rs via the transient receptor potential 2(TRPC2) channel is necessary for regeneration of receptors, as the TRPC2 null mutant mouse showed a 75% reduction of V2Rs by the age of two months. Here we describe V2R mediated signalling in a neuronal line established from vomeronasal stem cells taken from postnatal female mice. Cells were immunoreactive for G,o and V2R, whereas V1R and G,i immunoreactivity could not be detected. Biological ligands (dilute urine and its protein fractions) were found to increase proliferation and survival of these neurons. Dilute mouse urine but not artificial urine also induced ERK, Akt and CREB signalling in a dose dependent way. The volatile fraction of male mouse urine alone was without effect while the fraction containing peptides (> 5 kDa) also stimulated ERK and Akt phosphorylation. The ERK, Akt and CREB phosphorylation response was sensitive to pertussis toxin, confirming the involvement of V2R linked G,o. Dilute mouse urine or its high molecular weight protein fraction increased survival and proliferation of these neurons. Hence, urinary pheromones, which signal important social information via mature neurons, also promote survival and proliferation of their regenerating precursors. These data show that regenerating V2Rs respond to urine and the urinary peptides by activation of the Ras-ERK and PI3-Akt pathways, which appear to be important for vomeronasal neural survival and proliferation. [source] ATP activates both receptor and sustentacular supporting cells in the olfactory epithelium of Xenopus laevis tadpolesEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 1 2006Dirk Czesnik Abstract Nucleotides and amino acids are acknowledged categories of water-borne olfactory stimuli. In previous studies it has been shown that larvae of Xenopus laevis are able to sense amino acids. Here we report on the effect of ATP in the olfactory epithelium (OE) of Xenopus laevis tadpoles. First, ATP activates a subpopulation of cells in the OE. The ATP-sensitive subset of cells is almost perfectly disjoint from the subset of amino acid-activated cells. Both responses are not mediated by the well-described cAMP transduction pathway as the two subpopulations of cells do not overlap with a third, forskolin-activated subpopulation. We further show that, in contrast to amino acids, which act exclusively as olfactory stimuli, ATP appears to feature a second role. Surprisingly it activated a large number of sustentacular supporting cells (SCs) and, to a much lower extent, olfactory receptor neurons. The cells of the amino acid- and ATP-responding subsets featured differences in shape, size and position in the OE. The latencies to activation upon stimulus application differed markedly in these subsets. To obtain these results two technical points were important. We used a novel dextran-tetramethylrhodamine-backfilled slice preparation of the OE and we found out that an antibody to calnexin, a known molecular chaperone, also labels SCs. Our findings thus show a strong effect of ATP in the OE and we discuss some of the possible physiological functions of nucleotides in the OE. [source] Adult neurogenesis in the central olfactory pathway in the absence of receptor neuron turnover in Libinia emarginataEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 10 2005Jeremy M. Sullivan Abstract Life-long neurogenesis is a characteristic feature of the olfactory pathways of a phylogenetically diverse array of animals. In both vertebrates and invertebrates, the life-long addition of olfactory interneurons in the brain occurs in parallel with the continuous proliferation of olfactory receptor neurons in the olfactory organ. It has been proposed that these two processes are related functionally, with new olfactory interneurons being added to accommodate the new olfactory receptor neurons added in the periphery. While this has not been tested directly because the two processes are not readily separable, this question can be addressed in the olfactory pathway of the crab, Libinia emarginata. Unlike most decapod crustaceans, which moult and grow throughout life, L. emarginata has a terminal, maturational moult after which animals become anecdysic (stop moulting). Because the addition of new receptor neurons in crustaceans is associated with moulting, a comparison of neurogenesis in immature and mature L. emarginata provides an opportunity to examine the interdependence of central and peripheral neurogenesis in the olfactory pathway. This study demonstrates that the continuous addition of olfactory receptor neurons in L. emarginata ceases at the terminal moult but that proliferation and differentiation of olfactory interneurons in the brain continues in mature animals. Contrary to the general assumption, therefore, continuous neurogenesis in the central olfactory pathway of this species does not occur as part of a process involving the coregulation of central and peripheral neurogenesis. These findings suggest that peripheral neurogenesis is not a requirement for continuous neurogenesis in the central olfactory pathway. [source] Neuronal representation of odourants in the olfactory bulb of Xenopus laevis tadpolesEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 1 2003Dirk Czesnik Abstract When an odourant enters the nose, olfactory receptor neurons (ORNs) convey information about it to the olfactory bulb (OB), where this information is processed and where the first central representations of the odourant are generated. In this paper we show how odourants are represented by ensembles of OB neurons, in particular mitral cells (MCs) which are the output neurons of the OB. We were able to demonstrate for the first time that the intracellular calcium concentrations ([Ca2+]i) in the somata of these neurons undergo specific changes and that different stimuli are represented by different neuronal [Ca2+]i patterns. The similarity of patterns was assessed by cross-correlation analysis. We further show that noradrenaline (NA), which is reported to be involved in olfactory memory formation and to modulate synaptic transmission at dendrodendritic synapses in the OB, profoundly changes the representation of odourants at the level of MCs. [source] Phosphorylation of voltage-gated ion channels in rat olfactory receptor neuronsEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 7 2001Christian H. Wetzel Abstract In olfactory receptor neurons (ORNs), ligand,odorant receptor interactions cause G protein-mediated activation of adenylate cyclase and a subsequent increase in concentration of the intracellular messenger cAMP. Odorant-evoked elevation in cAMP is thought to directly activate a cation-selective cyclic nucleotide-gated channel, which causes external Ca2+ influx, leading to membrane depolarization and the generation of action potentials. Our data show that in freshly dissociated rat ORNs, odorant-induced elevation in cAMP also activates cAMP-dependent protein kinase (PKA), which is then able to phosphorylate various protein targets in the olfactory signal transduction pathway, specifically voltage-gated sodium and calcium channels. The presence of PKI (PKA inhibitor peptide) blocked the modulatory action of cAMP on voltage-gated ion channels. By modulating the input/output properties of the sensory neurons, this mechanism could take part in the complex adaptation process in odorant perception. In addition, we found modulation of voltage-gated sodium and calcium channel currents by 5-hydroxytryptamine and the dopamine D1 receptor agonist SKF 38393. These findings suggest that in situ ORNs might also be a target for efferent modulation. [source] Involvement of adenylate cyclase and tyrosine kinase signaling pathways in response of crayfish stretch receptor neuron and satellite glia cell to photodynamic treatmentGLIA, Issue 3 2005Anatoly Uzdensky Abstract Neuroglial interactions are most profound during development or damage of nerve tissue. We studied the responses of crayfish stretch receptor neurons (SRN) and satellite glial cells to photosensitization with sulfonated aluminum phthalocyanine Photosens. Although Photosens was localized mainly in the glial envelope, neurons were very sensitive to photodynamic treatment. Photosensitization gradually inhibited and then abolished neuron activity. Neuronal and glial nuclei shrank. Some neurons and glial cells lost the integrity of the plasma membrane and died through necrosis after the treatment. The nuclei of other glial cells but not neurons become fragmented, indicating apoptosis. The number of glial nuclei around neuron soma increased, probably indicating proliferation for enhanced neuron protection. Adenylate cyclase (AC) inhibition by MDL-12330A, or tyrosine kinase (TK) inhibition by genistein, shortened neuron lifetime, whereas AC activation by forskolin or protein tyrosine phosphatases (PTP) inhibition by sodium orthovanadate prolonged neuronal activity. Therefore, cAMP and phosphotyrosines produced by AC and TK, respectively, protected SRN against photoinactivation. AC inhibition reduced photodamage of the plasma membrane and subsequent necrosis in neuronal and glial cells. AC activation prevented apoptosis in photosensitized glial cells and stimulated glial proliferation. TK inhibition protected neurons but not glia against photoinduced membrane permeabilization and subsequent necrosis whereas PTP inhibition more strongly protected glial cells. Therefore, both signaling pathways involving cAMP and phosphotyrosines might contribute to the maintenance of neuronal activity and the integrity of the neuronal and glial plasma membranes. Adenylate cyclase but not phosphotyrosine signaling pathways modulated glial apoptosis and proliferation under photooxidative stress. © 2004 Wiley-Liss, Inc. [source] Cell and molecular biology of human olfactionMICROSCOPY RESEARCH AND TECHNIQUE, Issue 3 2002Nancy E. Rawson Abstract Progress in our understanding of olfactory receptor physiology has progressed greatly over the past 10 years. It has become clear that many anatomical and molecular features of the peripheral aspect of the olfactory system have remained highly conserved across diverse species. Yet, this structure is responsible for conveying a wide variety of information about the environment that is necessary to the successful location of food, mates, and avoidance of danger, and it is thus not surprising that specializations have also evolved to suit the differing needs of different species. While the basic anatomical features reflect those of other mammals, functional studies of human olfactory receptor neurons have revealed physiological features both similar to and differing from those of other mammalian species. This review presents an overview of both the anatomical and physiological data describing the cell and molecular biology of the peripheral human olfactory system and how it functions in health and disease. Microsc. Res. Tech. 58:142,151, 2002. © 2002 Wiley-Liss, Inc. [source] The electroolfactogram: A review of its history and usesMICROSCOPY RESEARCH AND TECHNIQUE, Issue 3 2002John W. Scott Abstract The electroolfactogram (EOG) is a negative electrical potential recorded at the surface of the olfactory epithelium of vertebrates. It represents primarily, if not exclusively, the summated generator potential in the olfactory receptor neurons (ORNs). While a number of studies suggest that secretory or inhibitory events may also contribute to the EOG, these are not well established. This review outlines (1) the cellular and physiological nature of the EOG response; (2) methodological considerations regarding odor selection and delivery, surgical preparation, response descriptions, and analysis; and (3) application of the EOG in human, fish, and insect olfaction and pheromonal responsivity. A number of technical issues associated with EOG recording are also discussed. Microsc. Res. Tech. 58:152,160, 2002. © 2002 Wiley-Liss, Inc. [source] Allatostatin immunoreactivity in the honeybee brainTHE JOURNAL OF COMPARATIVE NEUROLOGY, Issue 9 2010Sabine Kreissl Information transmission and processing in the brain is achieved through a small family of chemical neurotransmitters and neuromodulators and a very large family of neuropeptides. In order to understand neural networks in the brain it will be necessary, therefore, to understand the connectivity, morphology, and distribution of peptidergic neurons, and to elucidate their function in the brain. In this study we characterize the distribution of substances related to Dip-allatostatin I in the honeybee brain, which belongs to the allatostatin-A (AST) peptide family sharing the conserved c-terminal sequence -YXFGL-NH2. We found about 500 AST-immunoreactive (ASTir) neurons in the brain, scattered in 18 groups that varied in their precise location across individuals. Almost all areas of the brain were innervated by ASTir fibers. Most ASTir neurites formed networks within functionally distinct areas, e.g., the antennal lobes, the mushroom bodies, or the optic lobes, indicating local functions of the peptide. A small number of very large neurons had widespread arborizations and neurites were found in the corpora cardiaca and in the cervical connectives, suggesting that AST also has global functions. We double-stained AST and GABA and found that a subset of ASTir neurons were GABA-immunoreactive (GABAir). Double staining AST with backfills of olfactory receptor neurons or mass fills of neurons in the antennal lobes and in the mushroom bodies allowed a more fine-grained description of ASTir networks. Together, this first comprehensive description of AST in the bee brain suggests a diverse functional role of AST, including local and global computational tasks. J. Comp. Neurol. 518:1391,1417, 2010. © 2010 Wiley-Liss, Inc. [source] Allatostatin immunoreactivity in the honeybee brainTHE JOURNAL OF COMPARATIVE NEUROLOGY, Issue 9 2010Sabine Kreissl Abstract Information transmission and processing in the brain is achieved through a small family of chemical neurotransmitters and neuromodulators and a very large family of neuropeptides. In order to understand neural networks in the brain it will be necessary, therefore, to understand the connectivity, morphology, and distribution of peptidergic neurons, and to elucidate their function in the brain. In this study we characterize the distribution of substances related to Dip-allatostatin I in the honeybee brain, which belongs to the allatostatin-A (AST) peptide family sharing the conserved c-terminal sequence -YXFGL-NH2. We found about 500 AST-immunoreactive (ASTir) neurons in the brain, scattered in 18 groups that varied in their precise location across individuals. Almost all areas of the brain were innervated by ASTir fibers. Most ASTir neurites formed networks within functionally distinct areas, e.g., the antennal lobes, the mushroom bodies, or the optic lobes, indicating local functions of the peptide. A small number of very large neurons had widespread arborizations and neurites were found in the corpora cardiaca and in the cervical connectives, suggesting that AST also has global functions. We double-stained AST and GABA and found that a subset of ASTir neurons were GABA-immunoreactive (GABAir). Double staining AST with backfills of olfactory receptor neurons or mass fills of neurons in the antennal lobes and in the mushroom bodies allowed a more fine-grained description of ASTir networks. Together, this first comprehensive description of AST in the bee brain suggests a diverse functional role of AST, including local and global computational tasks. J. Comp. Neurol. 518:1391,1417, 2010. © 2010 Wiley-Liss, Inc. [source] Odorants as cell-type specific activators of a heat shock response in the rat olfactory mucosaTHE JOURNAL OF COMPARATIVE NEUROLOGY, Issue 4 2001Virginian McMillan Carr Abstract Heat shock, or stress, proteins (HSPs) are induced in response to conditions that cause protein denaturation. Activation of cellular stress responses as a protective and survival mechanism is often associated with chemical exposure. One interface between the body and the external environment and chemical or biological agents therein is the olfactory epithelium (OE). To determine whether environmental odorants affect OE HSP expression, rats were exposed to a variety of odorants added to the cage bedding. Odorant exposure led to transient, selective induction of HSP70, HSC70, HSP25, and ubiquitin immunoreactivities (IRs) in supporting cells and subepithelial Bowman's gland acinar cells, two OE non-neuronal cell populations involved with inhalant biotransformation, detoxification, and maintenance of overall OE integrity. Responses exhibited odor specificity and dose dependency. HSP70 and HSC70 IRs occurred throughout the apical region of supporting cells; ubiquitin IR was confined to a supranuclear cone-shaped region. Electron microscopic examination confirmed these observations and, additionally, revealed odor-induced formation of dense vesicular arrays in the cone-like regions. HSP25 IR occurred throughout the entire supporting cell cytoplasm. In contrast to classical stress responses, in which the entire array of stress proteins is induced, no increases in HSP40 and HSP90 IRs were observed. Extended exposure to higher odorant doses caused prolonged activation of the same HSP subset in the non-neuronal cells and severe morphological damage in both supporting cells and olfactory receptor neurons (ORNs), suggesting that non-neuronal cytoprotective stress response mechanisms had been overwhelmed and could no longer adequately maintain OE integrity. Significantly, ORNs showed no stress responses in any of our studies. These findings suggest a novel role for these HSPs in olfaction and, in turn, possible involvement in other normal neurophysiological processes. J. Comp. Neurol. 432:425,439, 2001. © 2001 Wiley-Liss, Inc. [source] Response profiles to amino acid odorants of olfactory glomeruli in larval Xenopus laevisTHE JOURNAL OF PHYSIOLOGY, Issue 2 2007Ivan Manzini Glomeruli in the vertebrate olfactory bulb (OB) appear as anatomically discrete modules receiving direct input from the olfactory epithelium (OE) via axons of olfactory receptor neurons (ORNs). The response profiles with respect to amino acids (AAs) of a large number of ORNs in larval Xenopus laevis have been recently determined and analysed. Here we report on Ca2+ imaging experiments in a nose,brain preparation of the same species at the same developmental stages. We recorded responses to AAs of glomeruli in the OB and determined the response profiles to AAs of individual glomeruli. We describe the general features of AA-responsive glomeruli and compare their response profiles to AAs with those of ORNs obtained in our previous study. A large number of past studies have focused either on odorant responses in the OE or on odorant-induced responses in the OB. However, a thorough comparison of odorant-induced responses of both stages, ORNs and glomeruli of the same species is as yet lacking. The glomerular response profiles reported herein markedly differ from the previously obtained response profiles of ORNs in that glomeruli clearly have narrower selectivity profiles than ORNs. We discuss possible explanations for the different selectivity profiles of glomeruli and ORNs in the context of the development of the olfactory map. [source] NADPH-Diaphorase Activity and NO Synthase Expression in the Olfactory Epithelium of the BovineANATOMIA, HISTOLOGIA, EMBRYOLOGIA, Issue 3 2010S. Wenisch With 2 figures Summary NADPH-diaphorase (NADPH-d) staining of the bovine olfactory epithelium was compared with the immunohistochemical localization of nitric oxide synthase (NOS), soluble guanylyl cyclase, and cGMP (cyclic guanosine 3,,5,-monophosphate). Out of the three isoforms, only the inducible NOS (NOS-II) was found at the epithelial surface correlating with the strong labelling for NADPH-d. In contrast, light diaphorase staining associated with deeper epithelial regions did not coincide with any NOS immunoreactivity. As there is overlapping expression of NOS-II, soluble guanylyl cyclase and cGMP at the luminal surface morphologically occupied by dendritic knobs of olfactory receptor neurons and microvillar endings of supporting cells, the nitric oxide (NO)/cGMP pathway is likely to be involved in modulating the odour signals during olfactory transduction. [source] |