Home About us Contact | |||
Receptor Degradation (receptor + degradation)
Selected AbstractsMolecular mechanism of ubiquitin recognition by GGA3 GAT domainGENES TO CELLS, Issue 7 2005Masato Kawasaki GGA (Golgi-localizing, ,-adaptin ear domain homology, ARF-binding) proteins, which constitute a family of clathrin coat adaptor proteins, have recently been shown to be involved in the ubiquitin-dependent sorting of receptors, through the interaction between the C-terminal three-helix-bundle of the GAT (GGA and Tom1) domain (C-GAT) and ubiquitin. We report here the crystal structure of human GGA3 C-GAT in complex with ubiquitin. A hydrophobic patch on C-GAT helices ,1 and ,2 forms a binding site for the hydrophobic Ile44 surface of ubiquitin. Two distinct orientations of ubiquitin Arg42 determine the shape and the charge distribution of ubiquitin Ile44 surface, leading to two different binding modes. Biochemical and NMR data strongly suggest another hydrophobic binding site on C-GAT helices ,2 and ,3, opposite to the first binding site, also binds ubiquitin although weakly. The double-sided ubiquitin binding provides the GAT domain with higher efficiency in recognizing ubiquitinated receptors for lysosomal receptor degradation. [source] The PDZ domain protein CAL interacts with mGluR5a and modulates receptor expressionJOURNAL OF NEUROCHEMISTRY, Issue 3 2010Shan Cheng J. Neurochem. (2010) 112, 588,598. Abstract In this study, we investigated the association of metabotropic glutamate receptor subtype-5a (mGluR5a) with cystic fibrosis transmembrane conductance regulator-associated ligand (CAL). Using glutathione- S -transferase pull-down techniques, we found that mGluR5a directly interacted with CAL, with the C-terminus of the receptor binding to the PSD95/Discslarge/ZO-1 homology domain of CAL. The last four amino acids (S-S-S-L) of the C-terminus of the receptor were essential determinants for the interaction. Co-immunoprecipitation experiments and immunofluorescence assays revealed that full-length mGluR5a also associated with intact CAL in vivo, an observation consistent with the results from studies on fragment interactions in vitro. Functionally, upon co-expression with mGluR5a, CAL profoundly inhibited the ubiquitination of mGluR5a and enhanced receptor expression at the protein level but not at the mRNA level. These findings reveal that mGluR5a protein expression is physiologically regulated via its interaction with CAL. These results also suggest a molecular mechanism by which mGluR5a protein expression may be regulated at the post-translational level by the CAL protein, possibly by blocking ubiquitination-dependent receptor degradation. [source] Alternative roles for Cdk5 in learning and synaptic plasticityBIOTECHNOLOGY JOURNAL, Issue 8 2007Ammar H. Hawasli Abstract Protein kinases mediate the intracellular signal transduction pathways controlling synaptic plasticity in the central nervous system. While the majority of protein kinases achieve this function via the phosphorylation of synaptic substrates, some kinases may contribute through alternative mechanisms in addition to enzymatic activity. There is growing evidence that protein kinases may often play structural roles in plasticity as well. Cyclin-dependent kinase 5 (Cdk5) has been implicated in learning and synaptic plasticity. Initial scrutiny focused on its enzymatic activity using pharmacological inhibitors and genetic modifications of Cdk5 cofactors. Quite recently Cdk5 has been shown to govern learning and plasticity via regulation of glutamate receptor degradation, a function that may not dependent on phosphorylation of downstream effectors. From these new studies, two roles emerge for Cdk5 in plasticity: one in which it controls structural plasticity via phosphorylation of synaptic substrates, and a second where it regulates functional plasticity via protein-protein interactions. [source] H. pylori selectively blocks EGFR endocytosis via the non-receptor kinase c-Abl and CagACELLULAR MICROBIOLOGY, Issue 1 2009Bianca Bauer Summary Helicobacter pylori infection is a primary cause of peptic ulcers and is associated with gastric carcinogenesis. The H. pylori -induced pathophysiology may be linked to the deregulation of EGFR signalling. Elevated mucosal levels of EGF and the EGFR have been found in antral gastric biopsies of H. pylori -infected patients. A critical mechanism for regulating EGFR signalling is ligand-induced endocytosis. The internalized receptor recycles back to the plasma membrane for continued signalling or is targeted for degradation terminating receptor signalling. Here, we show that H. pylori blocks EGFR endocytosis and receptor degradation upon prolonged infection of gastric epithelial cells. Moreover, this inhibition occurs via a CagA-dependent, but CagA phosphorylation-independent activation of the non-receptor kinase c-Abl, which in turn phosphorylates the EGFR target site pY1173. This suggests a novel CagA-induced host cell response that is independent of CagA tyrosine phosphorylation. Our data indicate an intriguing strategy of H. pylori in host cell manipulations by altering selective receptor populations via a CagA-dependent endocytic mechanism. Furthermore, we identified a new role for c-Abl in phosphorylation of the EGFR target site pY1173 during H. pylori infection. [source] |