Receptor Concentration (receptor + concentration)

Distribution by Scientific Domains


Selected Abstracts


VMAT2 quantitation by PET as a biomarker for ,-cell mass in health and disease

DIABETES OBESITY & METABOLISM, Issue 2008
M. Freeby
The common pathology underlying both type 1 and type 2 diabetes (T1DM and T2DM) is insufficient ,-cell mass (BCM) to meet metabolic demands. An important impediment to the more rapid evaluation of interventions for both T1DM and T2DM lack of biomarkers of pancreatic BCM. A reliable means of monitoring the mass and/or function of ,-cells would enable evaluation of the progression of diabetes as well as the monitoring of pharmacologic and other interventions. Recently, we identified a biomarker of BCM that is quantifiable by positron emission tomography (PET). PET is an imaging technique which allows for non-invasive measurements of radioligand uptake and clearance, is sensitive in the pico- to nanomolar range and of which the results can be deconvoluted into measurements of receptor concentration. For BCM estimates, we have identified VMAT2 (vesicular monoamine transporter type 2) as a biomarker and [11C] DTBZ (dihydrotetrabenazine) as the transporter's ligand. VMAT2 is highly expressed in ,-cells of the human pancreas relative to other cells of the endocrine and exocrine pancreas. Thus measurements of [11C] DTBZ in the pancreas provide an indirect measurement of BCM. Here we summarize our ongoing efforts to validate the clinical utility of this non-invasive approach to real-time BCM measurements [source]


Dopamine gene predicts the brain's response to dopaminergic drug

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 12 2007
Michael X Cohen
Abstract Dopamine is critical for reward-based decision making, yet dopaminergic drugs can have opposite effects in different individuals. This apparent discrepancy can be accounted for by hypothesizing an ,inverted-U' relationship, whereby the effect of dopamine agents depends on baseline dopamine system functioning. Here, we used functional MRI to test the hypothesis that genetic variation in the expression of dopamine D2 receptors in the human brain predicts opposing dopaminergic drug effects during reversal learning. We scanned 22 subjects while they engaged in a feedback-based reversal learning task. Ten subjects had an allele on the Taq1A DRD2 gene, which is associated with reduced dopamine receptor concentration and decreased neural responses to rewards (A1+ subjects). Subjects were scanned twice, once on placebo and once on cabergoline, a D2 receptor agonist. Consistent with an inverted-U relationship between the DRD2 polymorphism and drug effects, cabergoline increased neural reward responses in the medial orbitofrontal cortex, cingulate cortex and striatum for A1+ subjects but decreased reward responses in these regions for A1, subjects. In contrast, cabergoline decreased task performance and fronto-striatal connectivity in A1+ subjects but had the opposite effect in A1, subjects. Further, the drug effect on functional connectivity predicted the drug effect on feedback-guided learning. Thus, individual variability in how dopaminergic drugs affect the brain reflects genetic disposition. These findings may help to explain the link between genetic disposition and risk for addictive disorders. [source]


Molecular pathogenesis and prognostic factors in endometrial carcinoma

APMIS, Issue 10 2002
HELGA B. SALVESEN
Endometrial carcinoma is today among the most common gynecologic malignancies in industrialized countries. In order to improve the treatment and follow-up of these patients, various prognostic factors have been extensively studied. Patient age, stage of disease, histologic type and histologic grade have been shown to influence survival significantly, and the prognostic impact of these traditional clinicopathologic variables is well established. In addition, parity, hormone receptor concentration in the tumor, DNA ploidy and morphometric nuclear grade have all been found to influence prognosis. Information about DNA ploidy has especially been used in the clinical situation to determine individualized treatment. The prognostic significance of markers for tumor cell proliferation, cell cycle regulation (p53, p21 and p16) and angiogenesis is discussed as well as the molecular basis of endometrial carcinoma. In conclusion, several prognostic markers have been identified. It is likely that the information derived from these tumor biomarkers will reduce the need for extensive surgical staging and adjuvant treatment in endometrial carcinoma. [source]


Influence of cell cycle on ecdysteroid receptor in CHO-K1 cells

ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY (ELECTRONIC), Issue 3 2009
Katarzyna Betanska
Abstract CHO-K1 cells are routinely used for characterization of ecdysone receptor (EcR) function, because these vertebrate cells are devoid of endogenous ecdysone receptor protein. Moreover, the endogenous expression of RXR, the vertebrate orthologue of Ultraspiracle (Usp), the most important heterodimerization partner, is neglectable. In contrast to insect cells, there is also no influence of moulting hormone on CHO-K1 cells on cell proliferation either in the absence or presence of transiently expressed EcR. In contrast to Usp, which is exclusively found in nuclei, EcR is heterogeneously distributed between cytoplasm and nuclei in non-synchronized cells. Synchronization of CHO-K1 cells by nocodazole revealed that the cell cycle influences receptor concentration with lowest amounts in late S-phase and G2/M phase and intracellular distribution of the receptor protein showing a minimum of receptors present in nuclei during S-phase. EcR, but not Usp reduces cyclin D1 expression and cyclin D1 concentration is impaired by cyclin D1. Coimmunoprecipitation studies reveal physical interaction of EcR and cyclin D1. © 2009 Wiley Periodicals, Inc. [source]


Transcriptional activity of ecdysone receptor isoforms is regulated by modulation of receptor stability and interaction with Ab- and C-domains of the heterodimerization partner ultraspiracle

ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY (ELECTRONIC), Issue 3 2009
Heike Ruff
Abstract The stability of ecdysone receptor (EcR) expressed in a heterologous system is regulated in an isoform-specific manner and modified by ligand and heterodimerization partner. Transcriptional activities of various receptor complexes with Usp and ligand as determined by reporter assays are the result of two effects: change in receptor concentration and altered transcriptional capability. Transcriptional activity of EcR-A is low when compared to EcR-B1 independent of the absence or presence of Ultraspiracle (Usp). Ligand increased the concentration of EcR-A, but had no effect on the transcriptional capability, in contrast to EcR-B1, which is not stabilized by hormone or Usp, but the transcriptional capability is enhanced by heterodimerization and ligand. Exchange of the AB-domain of Usp by the activation domain (AD) of Vp16 revealed that the N-terminus of Usp inhibited transcriptional activity only with EcR-B isoforms, whereas the hexapeptide in the AB-domain of wild type Usp adjacent to the C-domain of Usp harbours an activating function. Deletion of the C-domain of Usp did not affect the stability of the receptor complex, but reduced the transcriptional capability of heterodimers with all EcR-isoforms, indicating that the stability of the receptor, which is important for termination of the hormone signal transduction, is regulated in a cooperative manner by the AB-domains of EcR and Usp, and ligand. We show the active role of Usp in modulation of the transcriptional activity of the heterodimer in an isoform-specific manner by the inhibitory N-terminus, the activating hexapeptide in the AB-domain, and the C-domain of Usp. © 2009 Wiley Periodicals, Inc. [source]


The role of oxytocin and regulation of uterine oxytocin receptors in pregnant marsupials

EXPERIMENTAL PHYSIOLOGY, Issue 2000
Laura J. Parry
The oxytocin-like peptide of most Australian marsupials is mesotocin, which differs from oxytocin by a single amino acid. This substitution has no functional significance as both peptides have equivalent affinity for and biological activity on the marsupial oxytocin-like receptor. A role for mesotocin in marsupial parturition has been demonstrated in the tammar wallaby where plasma mesotocin concentrations increase less than one minute before birth. Infusion of an oxytocin receptor antagonist at the end of gestation disrupts normal parturition, probably by preventing mesotocin from stimulating uterine contractions. In the absence of mesotocin receptor activation, a peripartum surge in prostaglandins is delayed which suggests a functional relationship between mesotocin, prostaglandin release and luteolysis. Female marsupials have anatomically separate uteri and in monovular species, such as the tammar wallaby, only one uterus is gravid with a single fetus whereas the contralateral uterus remains non-gravid. We have used this unique animal model to differentiate systemic and fetal-specific factors in the regulation of uterine function during pregnancy. The gravid uterus in the tammar wallaby becomes increasingly sensitive to mesotocin as gestation proceeds, with the maximum contractile response observed at term. This is reflected in a large increase in mesotocin receptor concentrations in the gravid uterus, and a downregulation in the non-gravid uterus in late pregnancy. The upregulation in myometrial mesotocin receptors is pregnancy-specific and independent of systemic steroids. One factor that may influence mesotocin receptor upregulation in the gravid uterus in late pregnancy is mechanical stretch of the uterus caused by the growing fetus. Our data highlight that a local fetal influence is more important than systemic factors in the regulation of mesotocin receptors in the tammar wallaby. [source]


Single value of serum transferrin receptor is not diagnostic for the absence of iron stores in anaemic patients with rheumatoid arthritis

INTERNATIONAL JOURNAL OF LABORATORY HEMATOLOGY, Issue 3 2003
S. Siebert
Summary Serum transferrin receptor (sTfR) concentrations were measured in anaemic patients with rheumatoid arthritis (RA). Serum transferrin receptor concentrations were positively correlated with the percentage of hypochromic cells and negatively correlated with MCH. There was a weak correlation with serum ferritin (sFn) concentration but not with reticulocyte count. Thus, high concentrations of sTfR indicate iron-deficient erythropoiesis rather than levels of storage iron in the tissues. Patients were divided into three groups on the basis of sFn concentration: those with probable tissue iron deficiency, those with adequate iron stores and those with intermediate values of sFn which did not allow classification. The median sTfR concentration was significantly higher in the iron-deficient group than in the other two groups but because of overlap between the three groups, a single sTfR value was of limited value in determining the level of storage iron in an individual with RA. [source]


Effect of dietary clenbuterol and cimaterol on muscle composition, ,-adrenergic and androgen receptor concentrations in broiler chickens

JOURNAL OF ANIMAL PHYSIOLOGY AND NUTRITION, Issue 3-4 2004
A. Schiavone
Summary Illegal dietary supplementation with ,2 -agonists has been shown to increase protein deposition and decrease fat accretion in domestic animals. In poultry the metabolic and endocrine responses to ,2 -agonists are not fully elucidated. In this trial the effects of dietary clenbuterol (1 p.p.m.) and cimaterol (1 p.p.m.) on muscle composition and endocrine response of male broiler chickens were studied. Dietary clenbuterol induced a slight, but in general not significant, improvement of zootechnical performances and carcass yields. Chemical composition of muscle was not influenced by dietary treatments, even if a slight improvement of protein content was observed in treated groups. No effects on fatty acid composition of meat were detected. Both clenbuterol and cimaterol treatments caused a downregulation in testicular androgen receptors and in pulmonary, cardiac and central nervous system , -adrenergic receptors. [source]


Hippocampal N -Methyl- d -Aspartate Receptor Subunit Expression Profiles in a Mouse Model of Prenatal Alcohol Exposure

ALCOHOLISM, Issue 2 2010
Sabrina L. Samudio-Ruiz
Background:, Although several reports have been published showing prenatal ethanol exposure is associated with alterations in N -methyl- d- aspartate (NMDA) receptor subunit levels and, in a few cases, subcellular distribution, results of these studies are conflicting. Methods:, We used semi-quantitative immunoblotting techniques to analyze NMDA receptor NR1, NR2A, and NR2B subunit levels in the adult mouse hippocampal formation isolated from offspring of dams who consumed moderate amounts of ethanol throughout pregnancy. We employed subcellular fractionation and immunoprecipitation techniques to isolate synaptosomal membrane- and postsynaptic density protein-95 (PSD-95)-associated pools of receptor subunits. Results:, We found that, compared to control animals, fetal alcohol-exposed (FAE) adult mice had: (i) increased synaptosomal membrane NR1 levels with no change in association of this subunit with PSD-95 and no difference in total NR1 expression in tissue homogenates; (ii) decreased NR2A subunit levels in hippocampal homogenates, but no alterations in synaptosomal membrane NR2A levels and no change in NR2A-PSD-95 association; and (iii) no change in tissue homogenate or synaptosomal membrane NR2B levels but a reduction in PSD-95-associated NR2B subunits. No alterations were found in mRNA levels of NMDA receptor subunits suggesting that prenatal alcohol-associated differences in subunit protein levels are the result of differences in post-transcriptional regulation of subunit localization. Conclusions:, Our results demonstrate that prenatal alcohol exposure induces selective changes in NMDA receptor subunit levels in specific subcellular locations in the adult mouse hippocampal formation. Of particular interest is the finding of decreased PSD-95-associated NR2B levels, suggesting that synaptic NR2B-containing NMDA receptor concentrations are reduced in FAE animals. This result is consistent with various biochemical, physiological, and behavioral findings that have been linked with prenatal alcohol exposure. [source]


A02 Effects of housing and short term transportation on hormonal levels and on lymphocyte glucocorticoid and ,-adrenergic receptor concentrations in beef calves

JOURNAL OF VETERINARY PHARMACOLOGY & THERAPEUTICS, Issue 2006
R. ODORE
No abstract is available for this article. [source]