Home About us Contact | |||
Recent Experimental (recent + experimental)
Terms modified by Recent Experimental Selected AbstractsCardiac regeneration by progenitor cells , bedside before bench?EUROPEAN JOURNAL OF CLINICAL INVESTIGATION, Issue 7 2005J. Bauersachs Abstract Recent experimental and clinical trials give rise to the hope that progenitor cells could replace scar tissue after myocardial infarction with healthy functional myocardium. However, while a significant increase in left ventricular ejection fraction has been described after progenitor cell transplantation in several clinical trials, long-term results are lacking, and the mechanisms underlying the improvement of ejection fraction are unclear. Therefore, the efficacy of progenitor cell transplantation after myocardial infarction has not been established, and potential problems may have been underestimated. In-depth laboratory and animal studies are needed to determine the best cell type, optimal amount of cells, and time point for transplantation. Treatment of patients with progenitor cells outside well controlled prospective trials should be avoided. [source] T Cell-mediated Rejection of Kidney Transplants: A Personal ViewpointAMERICAN JOURNAL OF TRANSPLANTATION, Issue 5 2010P. F. Halloran In kidney allografts, T cell mediated rejection (TCMR) is characterized by infiltration of the interstitium by T cells and macrophages, intense IFNG and TGFB effects, and epithelial deterioration. Recent experimental and clinical studies provide the basis for a provisional model for TCMR. The model proposes that the major unit of cognate recognition in TCMR is effector T cells engaging donor antigen on macrophages. This event creates the inflammatory compartment that recruits effector and effector memory CD4 and CD8 T cells, both cognate and noncognate, and macrophage precursors. Cognate T cells cross the donor microcirculation to enter the interstitium but spare the microcirculation. Local inflammation triggers dedifferentiation of the adjacent epithelium (e.g. loss of transporters and expression of embryonic genes) rather than cell death, via mechanisms that do not require known T-cell cytotoxic mechanisms or direct contact of T cells with the epithelium. Local epithelial changes trigger a response of the entire nephron and a second wave of dedifferentiation. The dedifferentiated epithelium is unable to exclude T cells, which enter to produce tubulitis lesions. Thus TCMR is a cognate recognition-based process that creates local inflammation and epithelial dedifferentiation, stereotyped nephron responses, and tubulitis, and if untreated causes irreversible nephron loss. [source] Effect Of Anti-Oxidant Treatment And Cholesterol Lowering On Resting Arterial Tone, Metabolic Vasodilation And Endothelial Function In The Human Forearm: A Randomized, Placebo-Controlled StudyCLINICAL AND EXPERIMENTAL PHARMACOLOGY AND PHYSIOLOGY, Issue 5-6 2001Stephen J Duffy SUMMARY 1. The aim of the present study was to determine whether anti-oxidant therapy with vitamin E and/or cholesterol-lowering therapy with simvastatin would augment resting forearm blood flow (FBF) and metabolic vasodilation in response to exercise and improve endothelial function in young patients with hypercholesterolaemia. 2. Endothelium-dependent and -independent, nitric oxide (NO)-mediated vasodilation have been shown to be impaired in young, otherwise healthy subjects with hypercholesterolaemia. Recent experimental and clinical studies suggest that vascular function may be improved with anti-oxidant or cholesterol- lowering therapy, although these treatments may be synergistic. 3. We compared FBF at rest, in response to isotonic exercise, the endothelium-dependent vasodilator acetylcholine (ACh), the endothelium-independent vasodilator sodium nitroprusside (SNP) and the NO synthase inhibitor NG -monomethyl- L -arginine (L -NMMA) in 26 young, otherwise healthy volunteers (mean (±SD) age 29±7 years; 14 female, 12 male) with hypercholesterolaemia, before and after 6 months treatment with vitamin E, simvastatin and/or placebo. Treatment was randomized, double-blinded in a 2 × 2 factorial design. Forearm blood flow was measured using venous occlusion plethysmography. 4. Vitamin E therapy increased plasma ,-tocopherol from 39.5±9.6 to 75.7±33.8 ,mol/L (P < 0.001). Simvastatin reduced total cholesterol from 6.9±1.7 to 4.9±0.8 mmol/L and low- density lipoprotein (LDL) from 4.8±1.7 to 3.0±0.7 mmol/L (both P < 0.001), although total and LDL,cholesterol also decreased slightly in the placebo group. Vitamin E increased resting FBF from 2.1±0.3 to 2.4±0.3 mL/100 mL per min (P = 0.04) and decreased resting forearm vascular resistance from 42.1±4.2 to 36.1±3.4 units (P = 0.01), but the reduction in resting FBF with L -NMMA was not affected. Vasodilation in response to isotonic exercise, ACh and SNP was similar before and after treatment in the placebo, vitamin E, simvastatin and in the combined vitamin E,simvastatin groups. NG -Monomethyl- L -arginine infusion reduced resting FBF and functional hyperaemia in response to exercise and these responses were not altered by treatment. 5. These data suggest that while vitamin E therapy augments resting FBF and reduces forearm vascular resistance in young hypercholesterolaemic subjects, these effects may not be via NO-dependent pathways. Metabolic vasodilation and responses to the NO-mediated vasodilators ACh and SNP were not favourably affected by anti-oxidant or cholesterol-lowering therapy, either alone or in combination. [source] Room temperature photoluminescence of the Li2ZnTi3O8 spinel: Experimental and theoretical studyINTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, Issue 5 2005M. S. C. Câmara Abstract This article describes the characterization of intense photoluminescence observed at room temperature of the Li2ZnTi3O8 spinel phase, obtained by the polymeric precursor method. The evolution of visible photoluminescence is demonstrated by measurement of the photoluminescence signal as a function of the annealing treatment time. The evolution indicates that PL can be attributed to the presence of an inorganic disordered phase. In addition, increased annealing treatment times cause not only a decrease in the total residual content of organic material in the samples, but also an intensified photoluminescence. We discuss the nature of visible photoluminescence at room temperature of the Li2ZnTi3O8 spinel phase in the light of results of both recent experimental and quantum mechanical theoretical studies. © 2005 Wiley Periodicals, Inc. Int J Quantum Chem, 2005 [source] Elastic and thermal properties of ,-plutoniumPHYSICA STATUS SOLIDI (B) BASIC SOLID STATE PHYSICS, Issue 8 2005Hans Siethoff Abstract It has been demonstrated in recent experimental and theoretical studies, that ,-Pu exhibits highly anisotropic phonon properties. The present paper indicates, that properties related to low-energy phonons such as Debye temperature and activation energy of self-diffusion do not reflect these anisotropies, and obey the same laws as other face-centred cubic metals. (© 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source] Allostery and cooperativity revisitedPROTEIN SCIENCE, Issue 8 2008Qiang Cui Abstract Although phenomenlogical models that account for cooperativity in allosteric systems date back to the early and mid-60's (e.g., the KNF and MWC models), there is resurgent interest in the topic due to the recent experimental and computational studies that attempted to reveal, at an atomistic level, how allostery actually works. In this review, using systems for which atomistic simulations have been carried out in our groups as examples, we describe the current understanding of allostery, how the mechanisms go beyond the classical MWC/Pauling-KNF descriptions, and point out that the "new view" of allostery, emphasizing "population shifts," is, in fact, an "old view." The presentation offers not only an up-to-date description of allostery from a theoretical/computational perspective, but also helps to resolve several outstanding issues concerning allostery. [source] Alteration of the disulfide-coupled folding pathway of BPTI by circular permutationPROTEIN SCIENCE, Issue 5 2004Grzegorz Bulaj BPTI, bovine pancreatic trypsin inhibitor; cBPTI, a circular form of BPTI generated by forming a peptide bond between the natural termini; cpBPTI, circularly permuted BPTI. Abstract The kinetics of disulfide-coupled folding and unfolding of four circularly permuted forms of bovine pancreatic trypsin inhibitor (BPTI) were studied and compared with previously published results for both wild-type BPTI and a cyclized form. Each of the permuted proteins was found to be less stable than either the wild-type or circular proteins, by 3,8 kcal/mole. These stability differences were used to estimate effective concentrations of the chain termini in the native proteins, which were 1 mM for the wild-type protein and 2.5 to 4000 M for the permuted forms. The circular permutations increased the rates of unfolding and caused a variety of effects on the kinetics of refolding. For two of the proteins, the rates of a direct disulfide-formation pathway were dramatically increased, making this process as fast or faster than the competing disulfide rearrangement mechanism that predominates in the folding of the wild-type protein. These two permutations break the covalent connectivity among the ,-strands of the native protein, and removal of these constraints appears to facilitate direct formation and reduction of nearby disulfides that are buried in the folded structure. The effects on folding kinetics and mechanism do not appear to be correlated with relative contact order, a measure of overall topological complexity. These observations are consistent with the results of other recent experimental and computational studies suggesting that circular permutation may generally influence folding mechanisms by favoring or disfavoring specific interactions that promote alternative pathways, rather than through effects on the overall topology of the native protein. [source] Triflusal: An Antiplatelet Drug with a Neuroprotective Effect?CARDIOVASCULAR THERAPEUTICS, Issue 1 2006José Antonio González-Correa ABSTRACT Triflusal is a derivative of salicylic acid with a well-established platelet aggregation inhibitory profile. Its pharmacokinetic and pharmacodynamic properties differ, however, somewhat from those of acetylsalicylic acid. A number of recent experimental and clinical studies have shown that triflusal is a potentially useful choice in the treatment and prophylaxis of brain ischemia because of its antithrombogenic as well as neuroprotective effects. Its antithrombogenic effect has been demonstrated at the clinical as well as at the experimental level, while its neuroprotective effect has been shown only in experimental models. The drug interferes with thrombogenesis by inhibiting thromboxane synthesis and increasing the levels of cAMP and nitric oxide. Its neuroprotective action is the result of its antioxidant and antiinflammatory effects in brain tissue. From a clinical standpoint triflusal is similar in efficacy to acetylsalicylic acid in preventing stroke, but has less adverse effects, especially it is less likely to cause bleeding. Because of its pharmacodynamic properties and lower rate of adverse reactions, triflusal may be a useful alternative to acetylsalicylic acid in the prevention of stroke. [source] Fitness cost of drug resistance in Mycobacterium tuberculosisCLINICAL MICROBIOLOGY AND INFECTION, Issue 2009S. Gagneux Abstract Multidrug-resistant (MDR) - and extensively drug-resistant (XDR) - forms of tuberculosis are growing public health problems. Mathematical models predict that the future of the MDR and XDR tuberculosis epidemics depends in part on the competitive fitness of drug-resistant strains. Here, recent experimental and molecular epidemiological data that illustrate how heterogeneity among drug-resistant strains of Mycobacterium tuberculosis can influence the relative fitness and transmission of this pathogen are reviewed. [source] |