Realistic Levels (realistic + level)

Distribution by Scientific Domains


Selected Abstracts


Effects of trapping effort and trap shyness on estimates of tiger abundance from camera trap studies

ANIMAL CONSERVATION, Issue 3 2004
Per Wegge
Camera trapping has recently been introduced as an unbiased and practical method for monitoring tiger abundance. In a high density area in the Royal Bardia National Park in lowland Nepal, we tested this method by trapping very intensively within a 25 km2 area to determine the true number of animals in that area. We then tested the effect of study design by sub-sampling the data set using varying distances between trap stations and by reducing the number of trapping nights at each station. We compared these numbers with the density estimates generated by the capture,recapture models of the program CAPTURE. Both distance between traps and trapping duration greatly influenced the results. For example, increasing the inter-trap distance from 1 to 2.1 km and reducing the trapping duration per station from 15 to 10 nights reduced the number of tigers captured by 25%. A significant decrease in trapping rates during successive 5-night periods suggested that our tigers became trap-shy, probably because of the photo flash and because they detected the camera traps from cues from impression pads 50 m from the traps. A significant behavioural response was also confirmed by the program CAPTURE. The best capture,recapture model selected by the computer program (Mbh) gave precise estimates from data collected by the initial 1 km spacing of traps. However, when we omitted data from half the number of traps, thus decreasing the sampling effort to a more realistic level for monitoring purposes, the program CAPTURE underestimated the true number of tigers. Most probably, this was due to a combination of trap shyness and the way the study was designed. Within larger protected areas, total count from intensive, stratified subsampling is suggested as a complementary technique to the capture,recapture method, since it circumvents the problem of trap shyness. [source]


Higher taxa are effective surrogates for species in the selection of conservation reserves in estuaries

AQUATIC CONSERVATION: MARINE AND FRESHWATER ECOSYSTEMS, Issue 6 2009
Mohammad Reza Shokri
Abstract 1.The lack of information about marine biodiversity is problematic for the selection of conservation reserves that aim to protect representative samples of biodiversity. A number of surrogate measures for biodiversity have been suggested as a potential solution to this problem. 2.The present study tested the effectiveness of using higher taxa of macroinvertebrates as a surrogate for species-level identification to depict spatial variation in species richness and assemblage variation and to select conservation reserves in one estuary in south-east Australia. 3.Spatial patterns of richness and assemblage variation for species were significantly correlated with patterns defined from genera, families, orders, classes, and phyla with a decline in the magnitude of correlation coefficients from finer to coarser resolutions. A network of reserves selected to include representatives of all phyla, classes, orders, families and genera coincidentally included 54%, 61.7%, 75%, 92.6%, 98.8% species in 8.3%, 13.9%, 17.7%, 44.4% and 58.3% of grid cells, respectively. However, only reserves selected for genera, families and orders performed significantly better than random selection. 4.Percentage of species represented by orders, families and genera in a realistic level of available grid cells for conservation (i.e. 13.9%) were very close ranging between 70 and 73.5%. A factor diminishing the performance of order as surrogate for species richness was related to the difficulty of identifying many macroinvertebrates to the order level. Therefore, it is concluded that genus- and family-level identification is an effective surrogate for species-level identification for conservation planning in estuaries. Copyright © 2008 John Wiley & Sons, Ltd. [source]


Toxicokinetics of perfluorocarboxylate isomers in rainbow trout

ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 2 2009
Amila O. De Silva
Abstract Perfluorooctanoate (PFOA) and other perfluorocarboxylates (PFCAs) are widely dispersed in the environment. Current and/or historical production of PFOA and fluorochemical precursors was conducted by telomerization and electrochemical fluorination (ECF). Telomer products typically contain linear chains of perfluorocarbons, and ECF products are a mixture of linear and branched isomers. The objective of the present study was to examine the role of toxicokinetics on PFCA isomer profiles in fish since monitoring studies have revealed a predominance of n -isomers of PFCAs in biota. Using dietary exposure, rainbow trout were administered technical ECF PFOA isomers (6.9 ,g/kg/d), linear perfluorononanoate (1.4 ,g/kg/d n -PFNA), and isopropyl PFNA (1.1 ,g/kg/d iso -PFNA) for 36 d and then switched to a 40-d clean diet. Throughout exposure and depuration phases, blood and tissue sampling ensued. The accumulation ratio (AR) revealed similar accumulation propensity of n -PFOA and two minor branched PFOA isomers; however, the majority of branched isomers had lower AR values than n -PFOA. Enrichment of n -PFOA and n -PFNA relative to most branched isomers was consistent in all tissues. First-order elimination (kd) and half-life (t1/2) values were calculated. The largest t1/2 corresponded to n -PFNA followed by iso -PFNA. In ECF PFOA isomers, both n -PFOA and one minor branched isomer had the largest t1/2, suggesting that this minor isomer could be diagnostic of ECF exposure using environmental PFOA isomer patterns. Results of lower-dose ECF PFOA exposure showed similar results to the high-dose study; it is possible that both scenarios resulted in saturation of processes involved in PFCA transport. As such, the toxicokinetics of PFCA isomers at environmentally realistic levels may deviate from the results of the present study. [source]


A critical evaluation of genomic control methods for genetic association studies

GENETIC EPIDEMIOLOGY, Issue 4 2009
Tony Dadd
Abstract Population stratification is an important potential confounder of genetic case-control association studies. For replication studies, limited availability of samples may lead to imbalanced sampling from heterogeneous populations. Genomic control (GC) can be used to correct ,2 test statistics which are presumed to be inflated by a factor ,; this may be estimated by a summary ,2 value (,median or ,mean) from a set of unlinked markers. Many studies applying GC methods have used fewer than 50 unlinked markers and an important question is whether this can adequately correct for population stratification. We assess the behavior of GC methods in imbalanced case-control studies using simulation. SNPs are sampled from two subpopulations with intra-continental levels of FST (,0.005) and sampling schemata ranging from balanced to completely imbalanced between subpopulations. The sampling properties of ,median and ,mean are explored using 6,1,600 unlinked markers to estimate Type 1 error and power empirically. GC corrections based on the ,2 -distribution (GCmedian or GCmean) can be anti-conservative even when more than 100 single nucleotide polymorphisms (SNPs) are genotyped and realistic levels of population stratification exist. The GCF procedure performs well over a wider range of conditions, only becoming anti-conservative at low levels of , and with fewer than 25 SNPs genotyped. A substantial loss of power can arise when population stratification is present, but this is largely independent of the number of SNPs used. A literature survey shows that most studies applying GC have used GCmedian or GCmean, rather than GCF, which is the most appropriate GC correction method. Genet. Epidemiol. 2009. © 2008 Wiley Liss, Inc. [source]


Analysis of single-locus tests to detect gene/disease associations,

GENETIC EPIDEMIOLOGY, Issue 3 2005
Kathryn Roeder
Abstract A goal of association analysis is to determine whether variation in a particular candidate region or gene is associated with liability to complex disease. To evaluate such candidates, ubiquitous Single Nucleotide Polymorphisms (SNPs) are useful. It is critical, however, to select a set of SNPs that are in substantial linkage disequilibrium (LD) with all other polymorphisms in the region. Whether there is an ideal statistical framework to test such a set of ,tag SNPs' for association is unknown. Compared to tests for association based on frequencies of haplotypes, recent evidence suggests tests for association based on linear combinations of the tag SNPs (Hotelling T2 test) are more powerful. Following this logical progression, we wondered if single-locus tests would prove generally more powerful than the regression-based tests? We answer this question by investigating four inferential procedures: the maximum of a series of test statistics corrected for multiple testing by the Bonferroni procedure, TB, or by permutation of case-control status, TP; a procedure that tests the maximum of a smoothed curve fitted to the series of of test statistics, TS; and the Hotelling T2 procedure, which we call TR. These procedures are evaluated by simulating data like that from human populations, including realistic levels of LD and realistic effects of alleles conferring liability to disease. We find that power depends on the correlation structure of SNPs within a gene, the density of tag SNPs, and the placement of the liability allele. The clearest pattern emerges between power and the number of SNPs selected. When a large fraction of the SNPs within a gene are tested, and multiple SNPs are highly correlated with the liability allele, TS has better power. Using a SNP selection scheme that optimizes power but also requires a substantial number of SNPs to be genotyped (roughly 10,20 SNPs per gene), power of TP is generally superior to that for the other procedures, including TR. Finally, when a SNP selection procedure that targets a minimal number of SNPs per gene is applied, the average performances of TP and TR are indistinguishable. Genet. Epidemiol. © 2005 Wiley-Liss, Inc. [source]


Synergistic effects associated with climate change and the development of rocky shore molluscs

GLOBAL CHANGE BIOLOGY, Issue 3 2005
R. Przeslawski
Abstract Global climate change and ozone layer thinning will simultaneously expose organisms to increasingly stressful conditions. Early life stages of marine organisms, particularly eggs and larvae, are considered most vulnerable to environmental extremes. Here, we exposed encapsulated embryos of three common rocky shore gastropods to simultaneous combinations of ecologically realistic levels of ultraviolet radiation (UVR), water temperature stress and salinity stress to identify potential interactions and associated impacts of climate change. We detected synergistic effects with increases in mortality and retardation in development associated with the most physiologically stressful conditions. The effects of UVR were particularly marked, with mortality increasing up to 12-fold under stressful conditions. Importantly, the complex outcomes observed on applying multiple stressors could not have been predicted from examining environmental variables in isolation. Hence, we are probably dramatically underestimating the ecological impacts of climate change by failing to consider the complex interplay of combinations of environmental variables with organisms. [source]


Stress synergy between drought and a common environmental contaminant: studies with the collembolan Folsomia candida

GLOBAL CHANGE BIOLOGY, Issue 4 2001
Rikke Højer
Summary The term global change is used predominantly in connection with the global temperature increase and associated changes in weather patterns over the next century. In a broader sense it also covers other anthropogenic impacts on the environment such as habitat fragmentation and pollution. The individual effects of each of these stress types have been extensively studied in the biota. However, organisms will frequently encounter these stress types in combination rather than alone and there is little information available on the effects of stress combinations. Here an examination is made of the interaction between realistic levels of summer drought and a common contaminant of agricultural soil (4-nonylphenol, NP), on a widespread soil invertebrate, the collembolan Folsomia candida. These stress factors were tested individually and in combination using a full factorial design. This approach revealed the existence of highly significant Bliss type synergistic interaction between the two stress types. Thus, exposure to NP significantly reduced the drought tolerance of this organism and, reciprocally, the toxicity of NP (LC50) during realistic summer drought was more than doubled in comparison to the value obtained under optimal soil moisture conditions. Furthermore, it is shown that NP has a detrimental effect on the physiological mechanisms underlying this animal's drought tolerance, thus providing some explanation for the mechanisms involved in the synergy. It is argued that this type of synergy is unlikely to be confined to this particular combination of stresses and thus there is a need to study the interactions between dominant natural stresses and pollution. The most important implication of these results is that some of the effects of global climate changes can be predicted to be most severe in polluted areas. [source]


Some highlights of research on aging with invertebrates, 2009

AGING CELL, Issue 5 2009
Linda Partridge
Summary This annual review focuses on invertebrate model organisms, which shed light on new mechanisms in aging and provide excellent systems for both genome-wide and in-depth analysis. This year, protein interaction networks have been used in a new bioinformatic approach to identify novel genes that extend replicative lifespan in yeast. In an extended approach, using a new, human protein interaction network, information from the invertebrates was used to identify new, candidate genes for lifespan extension and their orthologues were validated in the nematode Caenorhabditis elegans. Chemosensation of diffusible substances from bacteria has been shown to limit lifespan in C. elegans, while a systematic study of the different methods used to implement dietary restriction in the worm has shown that they involve mechanisms that are partially distinct and partially overlapping, providing important clarification for addressing whether or not they are conserved in other organisms. A new theoretical model for the evolution of rejuvenating cell division has shown that asymmetrical division for either cell size or for damaged cell constituents results in increased fitness for most realistic levels of cellular protein damage. Work on aging-related disease has both refined our understanding of the mechanisms underlying one route to the development of Parkinson's disease and has revealed that in worms, as in mice, dietary restriction is protective against cellular proteotoxicity. Two systematic studies genetically manipulating the superoxide dismutases of C. elegans support the idea that damage from superoxide plays little or no role in aging in this organism, and have prompted discussion of other kinds of damage and other kinds of mechanisms for producing aging-related decline in function. [source]


No evidence for optimal fitness at intermediate levels of inbreeding in Drosophila melanogaster

BIOLOGICAL JOURNAL OF THE LINNEAN SOCIETY, Issue 3 2009
STEPHEN P. ROBINSON
Optimal outbreeding theory predicts fitness benefits to intermediate levels of inbreeding. In the present study, we test for linear (consistent with inbreeding depression) and nonlinear (consistent with optimal outbreeding) effects of inbreeding on reproductive fitness in male and female Drosophila melanogaster. We found linear declines in fitness associated with increased inbreeding for egg-to-adult viability, but not the number of eggs laid or sperm competitive ability. Egg-to-adult viability was also lower in the progeny of inbred males and females mated to unrelated individuals. However, there was no evidence for optimal fitness at intermediate levels of inbreeding for any trait. The present study highlights the importance of considering biologically realistic levels of inbreeding and cross-generational effects when investigating the costs and benefits of mating with relatives. © 2009 The Linnean Society of London, Biological Journal of the Linnean Society, 2009, 98, 501,510. [source]