Reactor Model (reactor + model)

Distribution by Scientific Domains


Selected Abstracts


Detailed chemical kinetic modeling of pyrolysis of ethylene, acetylene, and propylene at 1073,1373 K with a plug-flow reactor model

INTERNATIONAL JOURNAL OF CHEMICAL KINETICS, Issue 4 2008
Koyo Norinaga
This study examines the predictive capability of our recently proposed reaction mechanism (Norinaga and Deutschmann, Ind Eng Chem Res 2007, 46, 3547) for hydrocarbon pyrolysis at varying temperature. The conventional flow reactor experiments were conducted at 8 kPa, over the temperature range 1073,1373 K, using ethylene, acetylene, and propylene as reactants to validate the mechanism. More than 40 compounds were identified and quantitatively analyzed by on- and off-line gas chromatography. The chemical reaction schemes consisting of 227 species and 827 reactions were coupled with a plug-flow reactor model that incorporated the experimentally measured axial temperature profile of the reactor. Comparisons between the computations and the experiments are presented for more than 30 products including hydrogen and hydrocarbons ranging from methane to coronene as a function of temperature. The model can predict the compositions of major products (mole fractions larger than 10,2) in the pyrolysis of three hydrocarbons with satisfactory accuracies over the whole temperature range considered. Mole fraction profiles of minor compounds including polycyclic aromatic hydrocarbons (PAHs) up to three ring systems, such as phenanthrene, anthracene, and phenylnaphthalene, are also fairly modeled. At temperatures lower than 1273 K, larger PAHs were underpredicted and the deviation became larger with decreasing temperature and increasing molecular mass of PAHs, while better agreements were found at temperatures higher than 1323 K. © 2008 Wiley Periodicals, Inc. Int J Chem Kinet 40: 199,208, 2008 [source]


Analysis of fluidization quality of a fluidized bed with staged gas feed for reactions involving gas-volume reduction

AICHE JOURNAL, Issue 9 2010
Takami Kai
Abstract A significant defluidization occurs when carrying out reactions involving a decrease in gas volume in a fluidized catalyst bed. The cause of this phenomenon is a decrease in the gas velocity in the emulsion phase below the minimum fluidization velocity. Fluidization quality is improved by a staged gas feed when hydrogenation of CO2 is carried out. To evaluate the experimental results, two parameters are introduced; gas-volume reduction rate and gas-volume ratio. Fluidization quality and defluidization zone are indicated as a map using these parameters. The vertical distributions of these parameters are calculated using a reactor model to obtain operating lines. The calculation shows that fluidization quality can be improved by operating the reactor by avoiding the operating lines of the defluidization zone in the map. For this purpose, it is required to control the gas-volume ratio at a level near unity and maintain the gas-volume reduction rate below 0.01/s. © 2010 American Institute of Chemical Engineers AIChE J, 2010 [source]


Simulation of a slurry-bubble column reactor for Fischer-Tropsch synthesis using single-event microkinetics

AICHE JOURNAL, Issue 8 2009
Gisela Lozano-Blanco
Abstract A single-event microkinetic model for Fischer-Tropsch synthesis including the water-gas shift reaction has been implemented in a one-dimensional, two-bubble class, heterogeneous model with axial effective diffusion to study the performance of a commercial slurry bubble column reactor. Mass balance equations are solved for every species in the reaction network in the large bubbles, small bubbles, and slurry phase, whereas the energy balance is applied to the slurry phase. The catalyst concentration profile is described by a sedimentation-dispersion model. The combination of microkinetics that generate net production rates for the individual reaction products and hydrodynamics allows describing detailed concentration profiles along the reactor axis as a function of operating conditions and design parameters. As example, the effects of catalyst loading, syngas feed flow rate, inlet temperature, or hydrogen to carbon monoxide inlet ratio on the individual hydrocarbons are investigated. To our knowledge, no reactor model in literature is able to describe detailed compositions at the level described by the reactor model developed in this work. © 2009 American Institute of Chemical Engineers AIChE J, 2009 [source]


Methane steam reforming at microscales: Operation strategies for variable power output at millisecond contact times

AICHE JOURNAL, Issue 1 2009
Georgios D. Stefanidis
Abstract The potential of methane steam reforming at microscale is theoretically explored. To this end, a multifunctional catalytic plate microreactor, comprising of a propane combustion channel and a methane steam reforming channel, separated by a solid wall, is simulated with a pseudo 2-D (two-dimensional) reactor model. Newly developed lumped kinetic rate expressions for both processes, obtained from a posteriori reduction of detailed microkinetic models, are used. It is shown that the steam reforming at millisecond contact times is feasible at microscale, and in agreement with a recent experimental report. Furthermore, the attainable operating regions delimited from the materials stability limit, the breakthrough limit, and the maximum power output limit are mapped out. A simple operation strategy is presented for obtaining variable power output along the breakthrough line (a nearly iso-flow rate ratio line), while ensuring good overlap of reaction zones, and provide guidelines for reactor sizing. Finally, it is shown that the choice of the wall material depends on the targeted operating regime. Low-conductivity materials increase the methane conversion and power output at the expense of higher wall temperatures and steeper temperature gradients along the wall. For operation close to the breakthrough limit, intermediate conductivity materials, such as stainless steel, offer a good compromise between methane conversion and wall temperature. Even without recuperative heat exchange, the thermal efficiency of the multifunctional device and the reformer approaches ,65% and ,85%, respectively. © 2008 American Institute of Chemical Engineers AIChE J, 2009 [source]


Spanning the flow regimes: Generic fluidized-bed reactor model

AICHE JOURNAL, Issue 7 2003
I. A. Abba
Probabilistic averaging is used to model fluidized-bed reactors across the three fluidlization flow regimes most commonly encountered in industry (bubbling, turbulent, and fast fluidization), extending earlier work, which introduced this approach to bridge the bubbling and turbulent regimes of fluidization. In extending this concept to the fast fluidization regime, the probabilities of being in each of the three regimes are represented as probability density functions derived from regime boundary transition data. The three regime-specific models,a generalized version of a two-phase bubbling bed model at low gas velocities, a dispersed flow model for turbulent beds at intermediate velocities, and a generalized version of a core-annulus model at higher velocities,are employed, leading to improved predictions compared with any of the individual models, while avoiding discontinuities at the regime boundaries. Predictions from the new integrated model are in good agreement with available ozone decomposition data over the full range of applicability covered elsewhere. [source]


Design of flexible reduced kinetic mechanisms

AICHE JOURNAL, Issue 11 2001
Avinash R. Sirdeshpande
Reduced mechanisms are often used in place of detailed chemistry because the computational burden of including all the species continuity equations in the reactor model is unreasonably high. Contemporary reduction techniques produce mechanisms that depend strongly on the nominal set of problem parameters for which the reduction is carried out. Effects of variability in these parameters on the reduced mechanism are the focus of this work. The range of validity of a reduced mechanism is determined for variations in initial conditions. Both sampling approaches and quantitative measures of feasibility, such as the flexibility index and the convex hull formulation, are employed. The inverse problem of designing a reduced mechanism that covers the desired range of initial conditions is addressed using a multiperiod approach. The effect of the value of a user-defined tolerance parameter, which determines whether the predictions made by the reduced mechanism are acceptable, is also assessed. The analytical techniques are illustrated with examples from the literature. [source]


A Simpler Approach to Population Balance Modeling in Predicting the Performance of Ziegler-Natta Catalyzed Gas-Phase Olefin Polymerization Reactor Systems

MACROMOLECULAR REACTION ENGINEERING, Issue 2-3 2009
Randhir Rawatlal
Abstract In this work, an alternative formulation of the Population Balance Model (PBM) is proposed to simplify the mathematical structure of the reactor model. The method is based on the segregation approach applied to the recently developed unsteady state residence time distribution (RTD). It is shown that the model can predict the performance of a reactor system under unsteady flow and composition conditions. Case studies involving time-varying catalyst flowrates, reactor temperature and reactor pressure were simulated and found to predict reactor performance with reasonable accuracy. The model was used to propose a grade transition strategy that could reduce transition time by as much as two hours. [source]


Effect of Reaction Conditions and Catalyst Design on the Rheological Properties of Polyolefins Produced in Gas-Phase Olefin Polymerization Reactors

MACROMOLECULAR THEORY AND SIMULATIONS, Issue 9 2008
P. Pladis
Abstract A model is developed to predict the viscoelastic behavior of polyolefins produced in catalytic polymerization reactors. The approach is based on the solution of different sub-models (e.g., a kinetic model, a single particle model, a macroscopic reactor model and a rheological model). From the calculated rheological curve, the polymer melt index is determined. The ability of the proposed model to predict the viscoelastic behavior of linear polymer melts quantitatively is examined for the operation of a catalytic olefin polymerization cascade-loop reactor process. In addition, the transient rheological properties of polyolefins produced in a Ziegler-Natta gas-phase olefin polymerization fluidized-bed reactor are calculated. [source]


Optimal control of non-linear chemical reactors via an initial-value Hamiltonian problem

OPTIMAL CONTROL APPLICATIONS AND METHODS, Issue 1 2006
V. Costanza
Abstract The problem of designing strategies for optimal feedback control of non-linear processes, specially for regulation and set-point changing, is attacked in this paper. A novel procedure based on the Hamiltonian equations associated to a bilinear approximation of the dynamics and a quadratic cost is presented. The usual boundary-value situation for the coupled state,costate system is transformed into an initial-value problem through the solution of a generalized algebraic Riccati equation. This allows to integrate the Hamiltonian equations on-line, and to construct the feedback law by using the costate solution trajectory. Results are shown applied to a classical non-linear chemical reactor model, and compared against suboptimal bilinear-quadratic strategies based on power series expansions. Since state variables calculated from Hamiltonian equations may differ from the values of physical states, the proposed control strategy is suboptimal with respect to the original plant. Copyright © 2005 John Wiley & Sons, Ltd. [source]


State estimation of a solid-state polymerization reactor for PET based on improved SR-UKF

ASIA-PACIFIC JOURNAL OF CHEMICAL ENGINEERING, Issue 2 2010
Ji Liu
Abstract A state estimator for the continuous solid-state polymerization (SSP) reactor of polyethylene terephthalate (PET) is designed in this study. Because of its invalidity in the application to some of the practical examples such as SSP processes, the square-root unscented Kalman filter (SR-UKF) algorithm is improved for the state estimation of arbitrary nonlinear systems with linear measurements. Discussions are given on how to avoid the filter invalidation and accumulating additional error. Orthogonal collocation method has been used to spatially discretize the reactor model described by nonlinear partial differential equations. The reactant concentrations on chosen collocation points are reconstructed from the outlet measurements corrupted with a large noise. Furthermore, the error performance of the developed ISR-UKF is investigated under the influence of various initial parameters, inaccurate measurement noise parameters and model mismatch. Simulation results show that this technique can produce fast convergence and good approximations for the state estimation of SSP reactor. Copyright © 2009 Curtin University of Technology and John Wiley & Sons, Ltd. [source]


Evaluation of an Entropy-Based Combustion Model using Stochastic Reactors

CHEMICAL ENGINEERING & TECHNOLOGY (CET), Issue 7 2008
J. Leicher
Abstract The entropy transport concept (ETC) presented in this paper is a novel approach to describe reaction systems such that the dynamic behavior of a chemical system can be reproduced with a minimum in independent parameters. It is shown that, for adiabatic conditions, the mixture fraction and the reaction entropy are sufficient to describe combustion processes without significant loss of information. Entropy is used as a measure of the reaction progress in this context. In order to evaluate the applicability of the ETC for combustion modeling in turbulent systems, the entropy transport concept was implemented into a stochastic reactor model. For several test cases, the results of this ETC-based reactor were compared with a reactor that directly integrates the species transport equations. [source]


A Grade Transition Strategy for the Prevention of Melting and Agglomeration of Particles in an Ethylene Polymerization Reactor

CHEMICAL ENGINEERING & TECHNOLOGY (CET), Issue 7 2005
M. R. Rahimpour
Abstract To satisfy the diverse product quality specifications required by the broad range of polyethylene applications, polymerization plants are forced to operate under frequent grade transition policies. During the grade transition, the reactor temperature must be kept within the narrow range between the gas dew point and the polymer melting point, otherwise the particles melt or agglomerate inside the reactor. In the present study, a dynamic well-mixed reactor model is used to develop a grade transition strategy to prevent melting and agglomeration of particles in an ethylene polymerization reactor. The model predicts the conditions under which the temperature of the reactor is outside the allowable range in continuous grade transition. Manipulation of feed flow and cooling water flow rates has shown that the reactor temperature cannot be maintained within the allowable range. Hence, a semi-continuous grade transition strategy is used for this case so that the temperature is maintained within the allowable range. In addition, several continuous and semi-continuous grade transition strategies for the production of linear low-density polyethylene (LLDPE), medium density polyethylene (MDPE), and high-density polyethylene (HDPE) are compared. [source]


Kinetic Reaction Models for the Selective Reduction of NO by Methane over Multifunctional Zeolite-based Redox Catalysts

CHEMICAL ENGINEERING & TECHNOLOGY (CET), Issue 12 2004
T. Sowade
Abstract Kinetic measurements of the selective catalytic reduction (SCR) of NO by methane were performed over CeO2/H-ZSM-5, In-ZSM-5, and CeO2/In-ZSM-5 catalysts. The parameter space covered NO, CH4, and O2 concentrations varying from 250 to 1000 ppm, from 500 to 2000 ppm, and from 0.5 to 10,vol.-%, respectively, space velocities between 5000 and 90000 h,1 and temperatures between 573 and 873 K depending on the catalyst activities. With CeO2/In-ZSM-5 an additional series of measurements was performed with moistened feed gas (0.5,10,vol.-% H2O). On the basis of a pseudo-homogeneous, one-dimensional fixed-bed reactor model, the data were fitted to a kinetic model that includes power rate laws for the reduction of NO and for the unselective total oxidation of methane. From analyses of isothermal data sets, almost all reaction orders were found to vary significantly with changing temperature, which indicates that the simple kinetic model cannot reflect the complex reaction mechanism correctly. Nevertheless, the data measured with In-ZSM-5 could be modeled with good accuracy over a wide range of reaction temperatures (150 K) while the accuracy was less satisfactory with the remaining data sets, in particular for data with the moist feed over CeO2/In-ZSM-5. With the latter catalyst it was not possible to represent the data measured in dry and in moist feed in a single model even upon confinement to fixed reaction temperatures. A comparison of the separate models established showed strong changes in the reaction orders in the presence of water, which occur apparently already at a very low water content (,,0.5,vol.-%). The kinetic parameters found are in agreement with earlier conclusions about the reaction mechanisms. With In-ZSM-5, both reaction orders and the activation energy show a rate-limiting influence of NO oxidation on the NO reduction path which is removed by the presence of the CeO2 promoter. A difference in the reaction mechanism over CeO2/In-ZSM-5 and CeO2/H-ZSM-5 is reflected in different kinetic parameters. The differences of the kinetic parameters between dry-feed and moist-feed models for CeO2/In-ZSM-5 reflect adsorption competition between the reactants and water. [source]