Reactive Metabolites (reactive + metabolite)

Distribution by Scientific Domains


Selected Abstracts


Comparison of DNA-Reactive Metabolites from Nitrosamine and Styrene Using Voltammetric DNA/Microsomes Sensors

ELECTROANALYSIS, Issue 9 2009
Sadagopan Krishnan
Abstract Voltammetric sensors made with films of polyions, double-stranded DNA and liver microsomes adsorbed layer-by-layer onto pyrolytic graphite electrodes were evaluated for reactive metabolite screening. This approach features simple, inexpensive screening without enzyme purification for applications in drug or environmental chemical development. Cytochrome P450 enzymes (CYPs) in the liver microsomes were activated by an NADPH regenerating system or by electrolysis to metabolize model carcinogenic compounds nitrosamine and styrene. Reactive metabolites formed in the films were trapped as adducts with nucleobases on DNA. The DNA damage was detected by square-wave voltammetry (SWV) using Ru(bpy) as a DNA-oxidation catalyst. These sensors showed a larger rate of increase in signal vs. reaction time for a highly toxic nitrosamine than for the moderately toxic styrene due to more rapid reactive metabolite-DNA adduct formation. Results were consistent with reported in vivo TD50 data for the formation of liver tumors in rats. Analogous polyion/ liver microsome films prepared on 500,nm silica nanoparticles (nanoreactors) and reacted with nitrosamine or styrene, provided LC-MS or GC analyses of metabolite formation rates that correlated well with sensor response. [source]


Rapid detection and characterization of reactive drug metabolites in vitro using several isotope-labeled trapping agents and ultra-performance liquid chromatography/time-of-flight mass spectrometry

RAPID COMMUNICATIONS IN MASS SPECTROMETRY, Issue 6 2009
Timo Rousu
Reactive metabolites are believed to be one of the main reasons for unexpected drug-induced toxicity issues, by forming covalent adducts with cell proteins or DNA. Due to their high reactivity and short lifespan they are not directly detected by traditional analytical methods, but are most traditionally analyzed by liquid chromatography/tandem mass spectrometry (LC/MS/MS) after chemical trapping with nucleophilic agents such as glutathione. Here, a simple but very efficient assay was built up for screening reactive drug metabolites, utilizing stable isotope labeled glutathione, potassium cyanide and semicarbazide as trapping agents and highly sensitive ultra-performance liquid chromatography/time-of-flight mass spectrometry (UPLC/TOFMS) as an analytical tool. A group of twelve structurally different compounds was used as a test set, and a large number of trapped metabolites were detected for most of them, including many conjugates not reported previously. Glutathione-trapped metabolites were detected for nine of the twelve test compounds, whereas cyanide-trapped metabolites were found for eight and semicarbazide-trapped for three test compounds. The high mass accuracy of TOFMS provided unambiguous identification of change in molecular formula by formation of a reactive metabolite. In addition, use of a mass defect filter was found to be a usable tool when mining the trapped conjugates from the acquired data. The approach was shown to provide superior detection sensitivity in comparison to traditional methods based on neutral loss or precursor ion scanning with a triple quadrupole mass spectrometer, and clearly more efficient detection and characterization of reactive drug metabolites with a simpler test setup. Copyright © 2009 John Wiley & Sons, Ltd. [source]


Pharmacokinetics, dose-range, and mutagenicity studies of methylphenidate hydrochloride in B6C3F1 mice,,

ENVIRONMENTAL AND MOLECULAR MUTAGENESIS, Issue 8 2008
Mugimane G. Manjanatha
Abstract Methylphenidate hydrochloride (MPH) is one of the most frequently prescribed pediatric drugs for the treatment of attention deficit hyperactivity disorder. In a recent study, increased hepatic adenomas were observed in B6C3F1 mice treated with MPH in their diet. To evaluate the reactive metabolite, ritalinic acid (RA) of MPH and its mode of action in mice, we conducted extensive investigations on the pharmacokinetics (PK) and genotoxicity of the drug in B6C3F1 mice. For the PK study, male B6C3F1 mice were gavaged once with 3 mg/kg body weight (BW) of MPH and groups of mice were sacrificed at various time points (0.25,24 hr) for serum analysis of MPH and RA concentrations. Groups of male B6C3F1 mice were fed diets containing 0, 250, 500, 1,000, 2,000, or 4,000 ppm of MPH for 28 days to determine the appropriate doses for 24-week transgenic mutation studies. Also, the micronucleus frequencies (MN-RETs and MN-NCEs), and the lymphocyte Hprt mutants were determined in peripheral blood and splenic lymphocytes, respectively. Mice fed 4,000 ppm of MPH lost significant BW compared to control mice (P < 0.01). There was a significant increase in the average liver weights whereas kidneys, seminal vesicle, testes, thymus, and urinary bladder weights of mice fed higher doses of MPH were significantly lower than the control group (P , 0.05). There was no significant increase in either the Hprt mutant frequency or the micronucleus frequency in the treated animals. These results indicated that although MPH induced liver hypertrophy in mice, no genotoxicity was observed. Environ. Mol. Mutagen., 2008. Published 2008 Wiley-Liss, Inc. [source]


Alcohol exposure and paracetamol-induced hepatotoxicity

ADDICTION BIOLOGY, Issue 2 2002
STEPHEN M. RIORDAN
In contrast, serious hepatotoxicity at recommended or near-recommended doses for therapeutic purposes has been reported, mainly from the United States and in association with chronic alcohol use, leading to the widely held belief that chronic alcoholics are predisposed to paracetamol-related toxicity at relatively low doses. Yet the effects of alcohol on paracetamol metabolism are complex. Studies performed in both experimental animals and humans indicate that chronic alcohol use leads to a short-term, two- to threefold increase in hepatic content of cytochrome P4502E1, the major isoform responsible for the generation of the toxic metabolite from paracetamol, although increased oxidative metabolism of paracetamol at recommended doses has not been demonstrated clinically. A reduced hepatic content of glutathione, required to detoxify the reactive metabolite, has been documented in chronic alcoholics, due probably to associated fasting and malnutrition, providing a metabolic basis for any possible predisposition of this group to hepatotoxicity at relatively low paracetamol doses. Simultaneous alcohol and paracetamol ingestion reduces oxidative metabolism of paracetamol in both rodents and humans, predominantly as a consequence of depletion in cytosol of free NADPH. The possibilities that chronic alcohol use may predispose to paracetamol-related hepatotoxicity and that alcohol taken with paracetamol may protect against it, based on these metabolic observations, are examined in this review. [source]


Influence of protein binding on acrolein turnover in vitro by oxazaphosphorines and liver microsomes

JOURNAL OF CLINICAL LABORATORY ANALYSIS, Issue 3 2005
Frank Baumann
Abstract For a correct determination of acrolein amounts generated in in vitro turnover experiments with oxazaphosphorines, it is necessary to characterize the interaction of acrolein with liver microsomal proteins. Acrolein, a highly reactive metabolite of oxazaphosphorines, readily forms covalent adducts with proteins by electrophilic attack on nucleophiles, such as the sulfhydryl group of cysteine, imidazole group of histidine, and amino group of lysine. The current investigations were mainly directed toward determination of the degree of acrolein-protein binding under conditions of in vitro experiments with liver microsome preparations. The acrolein concentration in protein dilution was determined by a fluorescence method. Moreover, the influence of sucrose and glycerine on the extent of acrolein-protein binding commonly used for the stabilization of microsomal preparations during storage was investigated. The current investigations show evidence that the chemical reaction of acrolein with liver microsomal proteins strictly follows first order kinetics. The main part of the formed acrolein in the in vitro attempts is available as bound part. Results of these investigations indicate that the calibration should be carried out with mixtures from liver microsome preparations and known amounts of acrolein under the same conditions as the in vitro experiments to record the entirely formed acrolein part (free and bound) in oxazaphosphorine turnover experiments. Glycerine is recommended as a preservative to store liver microsomes instead of sucrose because the latter reacts with acrolein. J. Clin. Lab. Anal. 19:103,109, 2005. © 2005 Wiley-Liss, Inc. [source]


Rapid detection and characterization of reactive drug metabolites in vitro using several isotope-labeled trapping agents and ultra-performance liquid chromatography/time-of-flight mass spectrometry

RAPID COMMUNICATIONS IN MASS SPECTROMETRY, Issue 6 2009
Timo Rousu
Reactive metabolites are believed to be one of the main reasons for unexpected drug-induced toxicity issues, by forming covalent adducts with cell proteins or DNA. Due to their high reactivity and short lifespan they are not directly detected by traditional analytical methods, but are most traditionally analyzed by liquid chromatography/tandem mass spectrometry (LC/MS/MS) after chemical trapping with nucleophilic agents such as glutathione. Here, a simple but very efficient assay was built up for screening reactive drug metabolites, utilizing stable isotope labeled glutathione, potassium cyanide and semicarbazide as trapping agents and highly sensitive ultra-performance liquid chromatography/time-of-flight mass spectrometry (UPLC/TOFMS) as an analytical tool. A group of twelve structurally different compounds was used as a test set, and a large number of trapped metabolites were detected for most of them, including many conjugates not reported previously. Glutathione-trapped metabolites were detected for nine of the twelve test compounds, whereas cyanide-trapped metabolites were found for eight and semicarbazide-trapped for three test compounds. The high mass accuracy of TOFMS provided unambiguous identification of change in molecular formula by formation of a reactive metabolite. In addition, use of a mass defect filter was found to be a usable tool when mining the trapped conjugates from the acquired data. The approach was shown to provide superior detection sensitivity in comparison to traditional methods based on neutral loss or precursor ion scanning with a triple quadrupole mass spectrometer, and clearly more efficient detection and characterization of reactive drug metabolites with a simpler test setup. Copyright © 2009 John Wiley & Sons, Ltd. [source]


Metabolite identification of a new antitumor agent icotinib in rats using liquid chromatography/tandem mass spectrometry

RAPID COMMUNICATIONS IN MASS SPECTROMETRY, Issue 14 2008
Zhongmin Guan
Icotinib, 4-[(3-ethynylphenyl)amino]-6,7-benzo-12-crown-4-quinazoline, is a new antitumor agent. The metabolic pathway of icotinib in rats was studied using liquid chromatography/tandem mass spectrometry (LC/MSn) analysis. Full scan and selected ion monitoring modes were used to profile the possible metabolites of icotinib in rat urine, feces and bile samples. Four phase I metabolites (M1,M4) and two phase II metabolites (M5, M6) were detected and characterized. Multiple-stage mass spectrometry and nuclear magnetic resonance (NMR) spectrometry were employed to elucidate structures of metabolites. Icotinib was metabolized to open the crown ether ring to form the main phase I metabolites. During metabolism, a reactive metabolite was formed. Using semicarbazide as a trapping agent, an intermediate arising from opening of the crown ether ring was detected as an aldehyde product by LC/MS/MS. These data indicated that ring opening of the crown ether was triggered by hydroxylation at the 8,-position of the ring to form a hemiacetal intermediate, which was further oxidized or reduced. Finally, the metabolic pathway of icotinib in rats was proposed. Copyright © 2008 John Wiley & Sons, Ltd. [source]


A comparative study on the acute and long-term effects of MDMA and 3,4-dihydroxymethamphetamine (HHMA) on brain monoamine levels after i.p. or striatal administration in mice

BRITISH JOURNAL OF PHARMACOLOGY, Issue 2 2005
Isabel Escobedo
1This study investigated whether the immediate and long-term effects of 3,4-methylenedioxymethamphetamine (MDMA) on monoamines in mouse brain are due to the parent compound and the possible contribution of a major reactive metabolite, 3,4-dihydroxymethamphetamine (HHMA), to these changes. The acute effect of each compound on rectal temperature was also determined. 2MDMA given i.p. (30 mg kg,1, three times at 3-h intervals), but not into the striatum (1, 10 and 100 ,g, three times at 3-h intervals), produced a reduction in striatal dopamine content and modest 5-HT reduction 1 h after the last dose. MDMA does not therefore appear to be responsible for the acute monoamine release that follows its peripheral injection. 3HHMA does not contribute to the acute MDMA-induced dopamine depletion as the acute central effects of MDMA and HHMA differed following i.p. injection. Both compounds induced hyperthermia, confirming that the acute dopamine depletion is not responsible for the temperature changes. 4Peripheral administration of MDMA produced dopamine depletion 7 days later. Intrastriatal MDMA administration only produced a long-term loss of dopamine at much higher concentrations than those reached after the i.p. dose and therefore bears little relevance to the neurotoxicity. This indicates that the long-term effect is not attributable to the parent compound. HHMA also appeared not to be responsible as i.p. administration failed to alter the striatal dopamine concentration 7 days later. 5HHMA was detected in plasma, but not in brain, following MDMA (i.p.), but it can cross the blood,brain barrier as it was detected in the brain following its peripheral injection. 6The fact that the acute changes induced by i.p. or intrastriatal HHMA administration differed indicates that HHMA is metabolised to other compounds which are responsible for changes observed after i.p. administration. British Journal of Pharmacology (2005) 144, 231,241. doi:10.1038/sj.bjp.0706071 [source]


Light-dependent mutagenesis by benzo[a]pyrene is mediated via oxidative DNA damage

ENVIRONMENTAL AND MOLECULAR MUTAGENESIS, Issue 3 2005
Su-Ryang Kim
Abstract Benzo[a]pyrene (B[a]P) is an environmental carcinogenic polycyclic aromatic hydrocarbon (PAH). Mammalian enzymes such as cytochrome P-450s and epoxide hydrase convert B[a]P to reactive metabolites that can covalently bind to DNA. However, some carcinogenic compounds that normally require metabolic activation can also be directly photoactivated to mutagens. To examine whether B[a]P is directly mutagenic in the presence of light, we exposed Salmonella typhimurium strains with different DNA repair capacities to B[a]P and white fluorescent light at wavelengths of 370,750 nm. B[a]P plus light significantly enhanced the number of His+ revertants. Mutagenesis was completely light-dependent and required no exogenous metabolic activation. The order of mutability of strains with different DNA repair capacities was strain YG3001 (uvrB, mutMST) , strain TA1535 (uvrB) > strain YG3002 (mutMST) > strain TA1975. The uvrB gene product is involved in the excision repair of bulky DNA adducts, and the mutMST gene encodes 8-oxoguanine (8-oxoG) DNA glycosylase, which removes 8-oxoG from DNA. Introduction of a plasmid carrying the mOgg1 gene that is the mouse counterpart of mutMST substantially reduced the light-mediated mutagenicity of B[a]P in strain YG3001. B[a]P plus light induced predominantly G:C , T:A and G:C , C:G transversions. We propose that B[a]P can directly induce bulky DNA adducts if light is present, and that the DNA adducts induce oxidative DNA damage, such as 8-oxoG, when exposed to light. These findings have implications for the photocarcinogenicity of PAHs. Environ. Mol. Mutagen., 2005. © 2005 Wiley-Liss, Inc. [source]


Mass defect filter technique and its applications to drug metabolite identification by high-resolution mass spectrometry

JOURNAL OF MASS SPECTROMETRY (INCORP BIOLOGICAL MASS SPECTROMETRY), Issue 7 2009
Haiying Zhang
Abstract Identification of drug metabolites by liquid chromatography/mass spectrometry (LC/MS) involves metabolite detection in biological matrixes and structural characterization based on product ion spectra. Traditionally, metabolite detection is accomplished primarily on the basis of predicted molecular masses or fragmentation patterns of metabolites using triple-quadrupole and ion trap mass spectrometers. Recently, a novel mass defect filter (MDF) technique has been developed, which enables high-resolution mass spectrometers to be utilized for detecting both predicted and unexpected drug metabolites based on narrow, well-defined mass defect ranges for these metabolites. This is a new approach that is completely different from, but complementary to, traditional molecular mass- or MS/MS fragmentation-based LC/MS approaches. This article reviews the mass defect patterns of various classes of drug metabolites and the basic principles of the MDF approach. Examples are given on the applications of the MDF technique to the detection of stable and chemically reactive metabolites in vitro and in vivo. Advantages, limitations, and future applications are also discussed on MDF and its combinations with other data mining techniques for the detection and identification of drug metabolites. Copyright © 2009 John Wiley & Sons, Ltd. [source]


An algorithm for thorough background subtraction from high-resolution LC/MS data: application for detection of glutathione-trapped reactive metabolites

JOURNAL OF MASS SPECTROMETRY (INCORP BIOLOGICAL MASS SPECTROMETRY), Issue 9 2008
Haiying Zhang
Abstract A control sample background-subtraction algorithm was developed for thorough subtraction of background and matrix-related signals in high-resolution, accurate mass liquid chromatography/mass spectrometry (LC/MS) data to reveal ions of interest in an analyte sample. This algorithm checked all ions in the control scans within a specified time window around the analyte scan for potential subtraction of ions found in that analyte scan. Applying this method, chromatographic fluctuations between runs were dealt with and background and matrix-related signals in the sample could be thoroughly subtracted. The effectiveness of this algorithm was demonstrated using four test compounds, clozapine, diclofenac, imipramine, and tacrine, to reveal glutathione (GSH)-trapped reactive metabolites after incubation with human liver microsomes supplemented with GSH (30 µM compound, 45-min incubation). Using this algorithm with a ± 1.0 min control scan time window, a ± 5 ppm mass error tolerance, and appropriate control samples, the GSH-trapped metabolites were revealed as the major peaks in the processed LC/MS profiles. Such profiles allowed for comprehensive and reliable identification of these metabolites without the need for any presumptions regarding their behavior or properties with respect to mass spectrometric detection. The algorithm was shown to provide superior results when compared to several commercially available background-subtraction algorithms. Many of the metabolites detected were doubly charged species which would be difficult to detect with traditional GSH adduct screening techniques, and thus, some of the adducts have not previously been reported in the literature. Copyright © 2008 John Wiley & Sons, Ltd. [source]


Inhibition and possible induction of rat CYP2D after short- and long-term treatment with antidepressants

JOURNAL OF PHARMACY AND PHARMACOLOGY: AN INTERNATI ONAL JOURNAL OF PHARMACEUTICAL SCIENCE, Issue 11 2002
Wladys, awa A. Daniel
The aim of this study was to investigate the influence of tricyclic antidepressants (imipramine, amitriptyline, clomipramine, desipramine), selective serotonin reuptake inhibitors (SSRIs: fluoxetine, sertraline) and novel antidepressant drugs (mirtazapine, nefazodone) on the activity of CYP2D, measured as a rate of ethylmorphine O -deethylation. The reaction was studied in control liver microsomes in the presence of the antidepressants, as well as in microsomes of rats treated intraperitoneally for one day or two weeks (twice a day) with pharmacological doses of the drugs (imipramine, amitriptyline, clomipramine, nefazodone 10 mg kg,1 i.p.; desipramine, fluoxetine, sertraline 5 mg kg,1 i.p.; mirtazapine 3 mg kg,1 i.p.), in the absence of the antidepressants in-vitro. Antidepressants decreased the activity of the rat CYP2D by competitive inhibition of the enzyme, the potency of their inhibitory effect being as follows: clomipramine (Ki = 14 ,M) > sertraline , fluoxetine (Ki = 17 and 16 ,M, respectively) > imipramine , amitriptyline (Ki = 26 and 25 ,M, respectively) > desipramine (Ki = 44 ,M) > nefazodone (Ki = 55 ,M) > mirtazapine (Ki = 107 ,M). A one-day treatment with antidepressants caused a significant decrease in the CYP2D activity after imipramine, fluoxetine and sertraline. After prolonged administration of antidepressants, the decreased CYP2D activity produced by imipramine, fluoxetine and sertraline was still maintained. Moreover, amitriptyline and nefazodone significantly decreased, while mirtazapine increased the activity of the enzyme. Desipramine and clomipramine did not produce any effect when administered in-vivo. The obtained results indicate three different mechanisms of the antidepressants-CYP2D interaction: firstly, competitive inhibition of CYP2D shown in-vitro, the inhibitory effects of tricyclic antidepressants and SSRIs being stronger than those of novel drugs; secondly, in-vivo inhibition of CYP2D produced by both one-day and chronic treatment with tricyclic antidepressants (except for desipramine and clomipramine) and SSRIs, which suggests inactivation of the enzyme apoprotein by reactive metabolites; and thirdly, in-vivo inhibition by nefazodone and induction by mirtazapine of CYP2D produced only by chronic treatment with the drugs, which suggests their influence on the enzyme regulation. [source]


Glutathione- S -transferase pi as a model protein for the characterisation of chemically reactive metabolites

PROTEINS: STRUCTURE, FUNCTION AND BIOINFORMATICS, Issue 2 2008
Rosalind E. Jenkins Dr.
Abstract Chemically reactive metabolites (CRMs) are thought to be responsible for a number of adverse drug reactions through modification of critical proteins. Methods that defined the chemistry of protein modification at an early stage would provide invaluable tools for drug safety assessment. Here, human GST pi (GSTP) was exploited as a model target protein to determine the chemical, biochemical and functional consequences of exposure to the hepatotoxic CRM of paracetamol (APAP), N -acetyl- p -benzoquinoneimine (NAPQI). Site-specific, dose-dependent modification of Cys47 in native and His-tagged GSTP was revealed by MS, and correlated with inhibition of glutathione (GSH) conjugating activity. In addition, the adaptation of iTRAQ labelling technology to define precisely the quantitative relationship between covalent modification and protein function is described. Multiple reaction monitoring (MRM)-MS of GSTP allowed high sensitivity detection of modified peptides at physiological levels of exposure. Finally, a bioengineered mutant cytochrome P450 with a broad spectrum of substrate specificities was used in an in vitro reaction system to bioactivate APAP: in this model, GSTP trapped the CRM and exhibited both reduced enzyme activity and site-specific modification of the protein. These studies provide the foundation for the development of novel test systems to predict the toxicological potential of CRMs produced by new therapeutic agents. [source]


Improved detection of reactive metabolites with a bromine-containing glutathione analog using mass defect and isotope pattern matching

RAPID COMMUNICATIONS IN MASS SPECTROMETRY, Issue 9 2010
André LeBlanc
Drug bioactivation leading to the formation of reactive species capable of covalent binding to proteins represents an important cause of drug-induced toxicity. Reactive metabolite detection using invitro microsomal incubations is a crucial step in assessing potential toxicity of pharmaceutical compounds. The most common method for screening the formation of these unstable, electrophilic species is by trapping them with glutathione (GSH) followed by liquid chromatography/mass spectrometry (LC/MS) analysis. The present work describes the use of a brominated analog of glutathione, N -(2-bromocarbobenzyloxy)-GSH (GSH-Br), for the invitro screening of reactive metabolites by LC/MS. This novel trapping agent was tested with four drug compounds known to form reactive metabolites, acetaminophen, fipexide, trimethoprim and clozapine. Invitro rat microsomal incubations were performed with GSH and GSH-Br for each drug with subsequent analysis by liquid chromatography/high-resolution mass spectrometry on an electrospray time-of-flight (ESI-TOF) instrument. A generic LC/MS method was used for data acquisition, followed by drug-specific processing of accurate mass data based on mass defect filtering and isotope pattern matching. GSH and GSH-Br incubations were compared to control samples using differential analysis (Mass Profiler) software to identify adducts formed via the formation of reactive metabolites. In all four cases, GSH-Br yielded improved results, with a decreased false positive rate, increased sensitivity and new adducts being identified in contrast to GSH alone. The combination of using this novel trapping agent with powerful processing routines for filtering accurate mass data and differential analysis represents a very reliable method for the identification of reactive metabolites formed in microsomal incubations. Copyright © 2010 John Wiley & Sons, Ltd. [source]


Screening strategy for the rapid detection of in vitro generated glutathione conjugates using high-performance liquid chromatography and low-resolution mass spectrometry in combination with LightSight® software for data processing

RAPID COMMUNICATIONS IN MASS SPECTROMETRY, Issue 22 2009
César Ramírez-Molina
The knowledge of drug metabolism in the early phases of the drug discovery process is vital for minimising compound failure at later stages. As chemically reactive metabolites may cause adverse drug reactions, it is generally accepted that avoiding formation of reactive metabolites increases the chances of success of a molecule. In order to generate this important information, a screening strategy for the rapid detection of invitro generated reactive metabolites trapped by glutathione has been developed. The bioassay incorporated the use of native glutathione and its close analogue the glutathione ethyl ester. The generic conditions for detecting glutathione conjugates that undergo constant neutral loss of 129 Da were optimised using a glutathione-based test mix of four compounds. The final liquid chromatography/tandem mass spectrometry constant neutral loss method used low-resolution settings and a scanning window of 200 amu. Data mining was rapidly and efficiently performed using LightSight® software. Unambiguous identification of the glutathione conjugates was significantly facilitated by the analytical characteristics of the conjugate pairs formed with glutathione and glutathione ethyl ester, i.e. by chromatographic retention time and mass differences. The reliability and robustness of the screening strategy was tested using a number of compounds known to form reactive metabolites. Overall, the developed screening strategy provided comprehensive and reliable identification of glutathione conjugates and is well suited for rapid routine detection of trapped reactive metabolites. This new approach allowed the identification of a previously unreported diclofenac glutathione conjugate. Copyright © 2009 John Wiley & Sons, Ltd. [source]


A liquid chromatography/tandem mass spectrometry method for detecting UGT-mediated bioactivation of drugs as their N -acetylcysteine adducts in human liver microsomes

RAPID COMMUNICATIONS IN MASS SPECTROMETRY, Issue 5 2009
Hiroshi Harada
The detection of the reactive metabolites of drugs has recently been gaining increasing importance. In vitro trapping studies using trapping agents such as glutathione are usually conducted for the detection of reactive metabolites, especially those of cytochrome P450-mediated metabolism. In order to detect the UDP-glucuronosyltransferase (UGT)-mediated bioactivation of drugs, an invitro trapping method using N -acetylcysteine (NAC) as a trapping agent followed by liquid chromatography/tandem mass spectrometry (LC/MS/MS) was developed in this study. After the test compounds (diclofenac and ketoprofen) had been incubated in human liver microsomes with uridine diphosphoglucuronic acid (UDPGA) and NAC, the NAC adducts formed through their acyl glucuronides were analyzed using LC/MS/MS with electrospray ionization (ESI). The NAC adduct showed a mass shift of 145 units as compared to its parent, and the characteristic ion fragmentations reflected the parent. This is a concise and high-throughput method for evaluating reactive metabolites by UGT-mediated bioactivation. Copyright © 2009 John Wiley & Sons, Ltd. [source]


Effects of Embelin on Lipid Peroxidation and Free Radical Scavenging Activity against Liver Damage in Rats

BASIC AND CLINICAL PHARMACOLOGY & TOXICOLOGY, Issue 4 2009
Dharmendra Singh
Carbon tetrachloride (CCl4) treatment to rats has been more susceptible to peroxidative damage through production of reactive metabolites, namely trichloromethyl-free radicals (CCl?3 and/or CCl3OO?) as measured by thiobarbituric acid reactive species. After the induction of liver damage by CCl4 intoxication to rats, the concentration of lipid peroxidation was significantly (P , 0.001) higher in liver and serum, along with concomitant decrease in the levels of antioxidants and cytochrome P450 enzyme in liver as compared to vehicle controls. The activities of marker enzymes , transaminases (AST, ALT), alkaline phosphatase (ALP), ,-glutamyl transpeptidase (GGT), lactate dehydrogenase (LDH) , along with the total bilirubin and total protein levels were altered significantly (P , 0.001) in the serum of CCl4 -treated rats. When these rats received embelin orally (25 mg/kg) from day 1 to day 15, peroxidative damage was minimal in both liver and serum along with effectively inducing the antioxidant potential in CCl4 -treated rats. The biochemical results were compared with the standard drug silymarin , a combination of flavonolignans of Silybum marianum and histology of liver sections. In conclusion, this study suggests that embelin acts as a natural antioxidant against hepatotoxicity induced in rats. [source]