Reacting Species (reacting + species)

Distribution by Scientific Domains


Selected Abstracts


Redox properties of the couple compound I/native enzyme of myeloperoxidase and eosinophil peroxidase

FEBS JOURNAL, Issue 19 2001
Jürgen Arnhold
The standard reduction potential of the redox couple compound I/native enzyme has been determined for human myeloperoxidase (MPO) and eosinophil peroxidase (EPO) at pH 7.0 and 25 °C. This was achieved by rapid mixing of peroxidases with either hydrogen peroxide or hypochlorous acid and measuring spectrophotometrically concentrations of the reacting species and products at equilibrium. By using hydrogen peroxide, the standard reduction potential at pH 7.0 and 25 °C was 1.16 ± 0.01 V for MPO and 1.10 ± 0.01 V for EPO, independently of the concentration of hydrogen peroxide and peroxidases. In the case of hypochlorous acid, standard reduction potentials were dependent on the hypochlorous acid concentration used. They ranged from 1.16 V at low hypochlorous acid to 1.09 V at higher hypochlorous acid for MPO and from 1.10 V to 1.03 V for EPO. Thus, consistent results for the standard reduction potentials of redox couple compound I/native enzyme of both peroxidases were obtained with all hydrogen peroxide and at low hypochlorous acid concentrations: possible reasons for the deviation at higher concentrations of hypochlorous acid are discussed. They include instability of hypochlorous acid, reactions of hypochlorous acid with different amino-acid side chains in peroxidases as well as the appearance of a compound I,chloride complex. [source]


Chemo- and Enzyme-Catalyzed Reactions Revealing a Common Temperature-Dependent Dynamic Solvent Effect on Enantioselectivity

HELVETICA CHIMICA ACTA, Issue 11 2003
Gianfranco Cainelli
The enantiomeric ratio E of enzyme-catalyzed (Candida antarctica lipase and lipase PS) and chemo-catalyzed (L -proline-based diamines) acylation reactions of 1-(naphthalen-2-yl)ethanol, 2-phenylpropanol, and 2-benzylpropane-1,3-diol is dependent on solvent and temperature. Plots of ln,E vs. 1/T showed the presence of inversion temperatures (Tinv). The Tinv values for the bio-catalyzed and the chemo-catalyzed reactions are fairly in agreement, and correspond as well to the TNMR values obtained by variable-temperature 13C-NMR experiments on the substrates in the same solvent of the resolution. This result demonstrates that clustering effects in the substrate solvation manage the chemical and the enzymatic enantioselectivity, and, moreover, that the solutesolvent cluster is always the real reacting species in solution for chemical as well as for enzymatic reactions. [source]


Preferential solvational effects on the Cr(VI) oxidation of benzylamines in benzene/2-methylpropan-2-ol mixtures

INTERNATIONAL JOURNAL OF CHEMICAL KINETICS, Issue 3 2010
A. Thirumoorthi
Imidazolium fluorochromate (IFC) oxidation of 11 meta- and para-substituted benzylamines, in varying mole fractions of benzene/2-methylpropan-2-ol binary mixtures, is first order in IFC and acid and zero order in substrate. The Hammett correlation yielded a U-shaped curve, indicating a change in the relative importance of bond formation and bond fission in the transition state. The rate data failed to correlate with macroscopic solvent parameters such as ,r and E. The correlation of kobs with Kamlet,Taft solvatochromic parameters suggests that H-bonding between the reacting species and the solvent plays a major role in governing the reactivity. © 2010 Wiley Periodicals, Inc. Int J Chem Kinet 42: 159,167, 2010 [source]


The reactivity of Ni(II) toward aspartic and glutamic monohydroxamates

INTERNATIONAL JOURNAL OF CHEMICAL KINETICS, Issue 9 2006
Fawzia Al-Sogair
The formation of complexes of Ni(II) with aspartic and glutamic acid hydroxamates was determined by potentiometric methods at I = 0.15 M NaCl and T = 25°C. The equilibrium study of Ni(II) with ASX or GLX revealed that the predominant species formed in solution were (M:L:H+): (1:1:0), (1:1:1), (2:1:0), and (2:1:1) in the whole pH range (,3,11). The formation of polymeric species was not observed. The octahedral structures were predicted in which the ligands act as tridentate ligands. The kinetics of complex formation between Ni(II) with ASX system as well as Ni(II) with GLX were also studied in a wide pH range. The observed rate constants for the Ni(II)-hydroxamates were found to be dependent on the total concentration of hydroxamates at a given pH through the following relations: kobs = Y0 + Z(TASX) and kobs = Y0 + Z(TGLX) + W(TGLX)2. The trans effect of the hydroxyl group present in the reacting species of Ni(OH)+ as well as a ring closure resulted from ligand chelation are introduced as explanations for the rate constants obtained for the reactions of Ni(II) with ASX or GLX. © 2006 Wiley Periodicals, Inc. Int J Chem Kinet 38: 540,552, 2006 [source]


Effect of Controlling Parameters on the Reaction Sequences of Formation of Nitrogen-Containing Magnesium Aluminate Spinel from MgO, Al2O3, and AlN

JOURNAL OF THE AMERICAN CERAMIC SOCIETY, Issue 3 2004
Siddhartha Bandyopadhyay
The reaction sequences of the formation of nitrogen-containing magnesium aluminate spinel from MgO, Al2O3, and AlN were investigated as a function of temperature through dilatometric study and as a function of time through isothermal heat treatments. The natures of reactions are described through the appearance of phases in conjunction with densification behavior and the change in lattice parameter of the spinel phase. Although the dilatometric study provides the detail insights of the formation sequence, the isothermal runs reveal new information about the differential rate of reactivity of the reacting species that suggested a tentative controlling mechanism. Through the initial formation of magnesium aluminate, oxygen-rich solid solution (MgAlON) forms, which ultimately reacts with the rest of AlN to reach its nominal composition. Nitrogen diffusion through MgAlON lattice seems to be rate controlling. [source]


A comprehensive kinetic model of laccase-catalyzed oxidation of aqueous phenol

BIOTECHNOLOGY PROGRESS, Issue 3 2009
Selvia Kurniawati
Abstract A comprehensive model was developed to describe the kinetics of the laccase-catalyzed oxidation of phenol that incorporates enzyme kinetics, enzyme inactivation, variable reaction stoichiometry between substrate and oxygen, and oxygen mass-transfer. The model was calibrated and validated against data obtained from experiments conducted in an open system, which allowed oxygen to transfer from air to the reacting mixture and phenol conversion to approach completion. Inactivation of laccase was observed over the course of the reaction and was found to be dependent on the rate of substrate transformation. A single kinetic expression was sufficient to describe laccase inactivation arising from interaction with reacting species over time. Excellent agreement was found between model predictions of phenol and oxygen concentrations and experimental data over time for a wide range of initial substrate concentrations and enzyme activities. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009 [source]