Reactants

Distribution by Scientific Domains
Distribution within Chemistry

Kinds of Reactants

  • acute phase reactant
  • acute-phase reactant
  • phase reactant

  • Terms modified by Reactants

  • reactant concentration
  • reactant molecule

  • Selected Abstracts


    Performance of fractionating reactors in the absence of rate limitations

    JOURNAL OF CHEMICAL TECHNOLOGY & BIOTECHNOLOGY, Issue 9 2004
    Jeroen L den Hollander
    Abstract A fractionating reactor for equilibrium-limited reactions is studied theoretically. Reactant A is fed in the center of the countercurrent fractionating system. Product P is effectively transported with the auxiliary phase, while product Q is effectively transported with the main phase, in which the reaction takes place. Model calculations were based on partition and reaction equilibrium at all stages. These show that if the initial reactant concentration and the flow rates are properly selected, the extent of conversion will significantly exceed the corresponding batch conversion. To approach complete conversion in the fractionating reactor, and to recover both products in a pure form, net transport of reactant in either of the countercurrent directions should be prevented. However, irrespective of the number of equilibrium stages, this situation cannot be fully reached when the reactant feed stream is too large (compared with the main and auxiliary streams). Nonetheless, one of the two products may be recovered in a pure form even for such large feed streams. Copyright © 2004 Society of Chemical Industry [source]


    Synthesis of Peptide-PNA-Peptide Conjugates by Semi-Solid-Phase Chemical Ligation Combined with Deactivation/Capture of Excess Reactants

    EUROPEAN JOURNAL OF ORGANIC CHEMISTRY, Issue 4 2004
    Martijn C. de Koning
    Abstract An expeditious route to peptide-PNA-peptide conjugates following a two-step native chemical ligation (NCL) strategy is described. A cys-PNA-thioester is immobilized on PEGA-aldehyde resin by thiazolidine formation, followed by capping of excess resin aldehydes. The first NCL reaction is then performed with the immobilized PNA-thioester, to give, after release from the solid support, the cys-PNA-peptide intermediate with relatively high purity. The latter is then converted into the target compound by the second NCL reaction with a thioester peptide, the excess of which is captured using a cysteine-PEGA resin. The resulting peptide-PNA-peptide can then be readily isolated by a simple purification step. (© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2004) [source]


    Reactive Synthesis and Phase Stability Investigations in the Aluminum Nitride,Silicon Carbide System

    JOURNAL OF THE AMERICAN CERAMIC SOCIETY, Issue 5 2000
    Ellen M. Carrillo-Heian
    The effect of AlN on the structure formation of SiC was investigated. SiC was synthesized in the presence of AlN under vacuum at 1500°C, and the result was cubic SiC. The synthesis of AlN,SiC composites through the reaction Si3N4+ 4Al + 3C = 3SiC + 4AlN was also investigated and compared with synthesis via field-activated self-propagating combustion (FASHS). Reactants were heated in a vacuum furnace at temperatures ranging from 1130° to 1650°C. Below 1650°C, the reaction is not complete and at this temperature the product phases are AlN and cubic SiC. At 1650°C, the product contained an outer layer which contained ,-SiC only and an inner region which contained AlN and cubic SiC. 2H-SiC and AlN composites synthesized via field-activated self-propagating combustion were annealed at 1700°C under vacuum. The AlN dissociated and evaporated and the 2H-SiC transformed to the cubic , phase. Reasons for the differences in products of furnace heating and FASHS are discussed. [source]


    Absolute Asymmetric Reduction Based on the Relative Orientation of Achiral Reactants,

    ANGEWANDTE CHEMIE, Issue 37 2009
    Alexander Kuhn Prof.
    Interessiert an Chiralität? Absolut! Eine absolute asymmetrische Synthese liegt vor, wenn es in Abwesenheit einer chiralen Spezies zu einem Symmetriebruch kommt. In einer rein geometrischen Methode für die enantioselektive Reduktion prochiraler Ketone wurde die passende Oberfläche eines achiralen Keton-Einkristalls dem Reduktionsmittel NaBH4 ausgesetzt, wobei die relative räumliche Orientierung der achiralen Reaktanten die Händigkeit des Produkts festlegte (siehe Bild). [source]


    ,-Haloenol Acetates: Versatile Reactants for Oxetan-2-one, Azetidin-2-one and Isoxazolidin-5-one Synthesis.

    CHEMINFORM, Issue 13 2007
    Romain Bejot
    Abstract ChemInform is a weekly Abstracting Service, delivering concise information at a glance that was extracted from about 200 leading journals. To access a ChemInform Abstract, please click on HTML or PDF. [source]


    Autoantibodies to the islet cell antigen SOX-13 are associated with duration but not type of diabetes

    DIABETIC MEDICINE, Issue 3 2003
    T. M. E. Davis
    Abstract Aims The autoantigen SOX-13 of the SRY-related high mobility group box is a low-frequency reactant in sera from patients with Type 1 diabetes. We further investigated the potential diagnostic role of anti-SOX-13, and in particular its ability to distinguish Type 1 from Type 2 diabetes, in two large, well-characterized cohorts. Methods SOX-13 autoantibody status was ascertained using a radioimmunoprecipitation assay in (i) a random sample of 546 participants in an Australian community-based study (the Fremantle Diabetes Study; FDS) of whom 119 had Type 1 and 427 Type 2 diabetes, and (ii) a sample of 333 subjects with Type 2 diabetes from the United Kingdom Prospective Diabetes Study (UKPDS) stratified by age, anti-glutamic acid decarboxylase (GAD) and islet cell antibody (ICA) status, and requirement for insulin therapy within 6 years of diagnosis. Results The frequencies of anti-SOX-13 in the FDS subjects were 16.0% and 14.8% for Type 1 and Type 2 patients, respectively, and levels were similar. In the UKPDS subjects, the frequency was 4.5%. In a logistic regression model involving demographic, anthropometric and metabolic variables, only diabetes duration was significantly associated with anti-SOX-13 positivity, especially for duration > 5 years (P < 0.002). When the coexistence of autoantibodies was assessed in the two study samples, there were no significant associations between anti-SOX-13 and ICA, anti-GAD or ICA512/IA-2. Conclusions Whilst the frequency of anti-SOX-13 may be increased in some populations of diabetic patients, this reactivity does not usefully distinguish Type 1 from Type 2 diabetes. However, the association with diabetes duration suggests that anti-SOX-13 may be a non-specific marker of tissue damage associated with chronic hyperglycaemia. Diabet. Med. 20, 198,204 (2003) [source]


    Application of Nanoparticles in Electrochemical Sensors and Biosensors

    ELECTROANALYSIS, Issue 4 2006
    Xiliang Luo
    Abstract The unique chemical and physical properties of nanoparticles make them extremely suitable for designing new and improved sensing devices, especially electrochemical sensors and biosensors. Many kinds of nanoparticles, such as metal, oxide and semiconductor nanoparticles have been used for constructing electrochemical sensors and biosensors, and these nanoparticles play different roles in different sensing systems. The important functions provided by nanoparticles include the immobilization of biomolecules, the catalysis of electrochemical reactions, the enhancement of electron transfer between electrode surfaces and proteins, labeling of biomolecules and even acting as reactant. This minireview addresses recent advances in nanoparticle-based electrochemical sensors and biosensors, and summarizes the main functions of nanoparticles in these sensor systems. [source]


    Integrated Enzymatic Synthesis and Adsorption of Isomaltose in a Multiphase Fluidized Bed Reactor

    ENGINEERING IN LIFE SCIENCES (ELECTRONIC), Issue 5 2006
    M. Ergezinger
    Abstract Dextransucrase catalyzes the formation of dextran, but also of numerous oligosaccharides from sucrose and different acceptors, if appropriate conditions are chosen. A process on a technical scale with immobilized enzyme was established to produce isomaltose, a disaccharide of industrial interest. Isomaltose is also a reactant for dextransucrase and has to be quickly taken out of the reaction solution. This was realized by integrated adsorption of isomaltose on zeolites. In the case of biotransformation the reactor works with a fluidized bed of immobilized enzyme and the in situ separation is realized with a suspension flow of adsorbent. This process was investigated experimentally and theoretically. With a design model consisting of hydrodynamics, kinetics of enzymatic synthesis, and thermodynamics of adsorption, a comparison was made between experimental and calculated data. [source]


    Catalytic cleavage of methyl oleate or oleic acid

    EUROPEAN JOURNAL OF LIPID SCIENCE AND TECHNOLOGY, Issue 1 2010
    Angela Köckritz
    Abstract Different reaction pathways are discussed for the Os-catalyzed oxidation of methyl oleate and oleic acid using O2/aldehyde as oxidation system. Monomethyl azelate and pelargonic acid were the main products obtained in yields of approximately 50,70% starting from methyl oleate. Besides, varying amounts of methyl 9,10-epoxystearate and methyl 9,10-dihydroxystearate were found as by-products. Azelaic acid and pelargonic acid were obtained exclusively from oleic acid used as reactant. Some mechanistic considerations led to the conclusion that the observed products are formed in parallel reaction paths. The effective oxidant for the scission of the C=C double bond seems to be very likely an in situ formed peracid generated by Os-catalysis from O2/aldehyde. Additional investigations concerning the cleavage of oleic acid and methyl oleate with in situ formed performic acid from H2O2/formic acid corroborate this assumption. [source]


    Synthesis and Characterization of Pyrazolyl-Functionalized Imidazolium-Based Ionic Liquids and Hemilabile (Carbene)palladium(II) Complex Catalyzed Heck Reaction

    EUROPEAN JOURNAL OF ORGANIC CHEMISTRY, Issue 4 2007
    Ruihu Wang
    Abstract Neat reactions of 1-(pyrazolylmethyl)imidazole with an excess of alkyl or polyfluoroalkyl halides at 100 °C followed by subsequent metathetical reactions with LiN(SO2CF3)2 or KPF6 at 25 °C gave rise to a series of monoquaternary salts 3a,3k. These salts can be also prepared through treatment of 1-alkylimidazole with 1-(chloromethyl)pyrazole hydrochloride in the presence of base, followed by anion exchange with LiN(SO2CF3)2 or KPF6. Their phase-transition temperature, thermal stability, density and solubility in common solvents have been investigated. Most of the bis(trifluoromethanesulfon)amide salts are room-temperature ionic liquids. The effect of anions and of alkyl substituents bonded to the imidazolium cation on the physicochemical properties was examined. Using 3-butyl-1-(pyrazolylmethyl)imidazolium chloride (2d), the precursor of 3-butyl-1-(pyrazolylmethyl)imidazolium bis(trifluoromethanesulfon)amide (3d), as a reactant, a hemilabile (N-heterocyclic carbene)palladium(II) complex 4 was synthesized through a (carbene)silver(I) transfer reagent. It was characterized by single-crystal X-ray diffraction analysis. The catalytic activity and recyclability of 4 in 3d were preliminarily evaluated by consecutive Heck reactions using different substrates. (© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2007) [source]


    The Influence of Mass Transfer on a Porous Fuel Cell Electrode

    FUEL CELLS, Issue 1-2 2004
    Y.-P. Sun
    Abstract A one-dimensional model for a porous fuel cell electrode using a liquid electrolyte with dissolved reactant is presented. The model consists of a Poisson, second-order ordinary differential equation, describing the effect of the electric field and a one-dimensional; Fickian diffusion, second-order ordinary differential equation describing the concentration variation associated with diffusion. The model accounts for mass transport and heterogeneous electrochemical reaction. The solution of this model is by the approximate Adomian polynomial method and is used to determine lateral distributions of concentration, overpotential and current density and overall cell polarisation. The model is used to simulate the effects of important system and operating parameters, i.e. local diffusion rates, and mass transport coefficients and electrode polarisation behaviour. [source]


    Kinetics and mechanism of the hydrolytic disproportionation of iodine

    INTERNATIONAL JOURNAL OF CHEMICAL KINETICS, Issue 11 2004
    Krisztina Seb, k-Nagy
    Kinetics of the hydrolytic disproportionation of I2 was studied by UV,VIS spectrophotometry at 298 K and at the ionic strength 0.2 M (NaClO4) in buffered solutions in the pH range 8.91,10.50 at different initial iodide concentrations. The characterization of this reaction is fundamental for modeling oscillatory and front reactions in the presence of iodine as reactant or intermediate as well as for drinking water treatment. A matrix rank analysis confirmed three absorbing species in the beginning of the reaction, whereas later assumption of two species is enough to describe the experimental data in the visible part of the spectrum. A reaction mechanism was proposed for disproportionation by using fitting/simulation with a multipurpose program package ZiTa, by simultaneous evaluation of 17,906 points in 79 experimental curves. A parameter set was suggested, which was obtained by absolute, relative, and orthogonal fittings of the experimental data. © 2004 Wiley Periodicals, Inc. Int J Chem Kinet 36: 596,602, 2004 [source]


    Thermal decomposition of tert -butyl peroxide in a gas chromatographic reactor: A comparison of kinetic approaches

    INTERNATIONAL JOURNAL OF CHEMICAL KINETICS, Issue 7 2004
    Peter J. Skrdla
    The thermal decomposition of tert -butyl peroxide is investigated utilizing both the column and the injection port of a commercial gas chromatograph (GC) as chemical reactors. Using the injector liner as the reactor, the chromatographic peak areas of the reactant, measured at various injector temperatures, are used in the determination of the activation energy of the decomposition (Ea). With the column serving as the reactor, both the reactant peak areas and the product peak shapes are similarly utilized for this purpose. Values of Ea obtained using different mathematical treatments for each of the three approaches are found to range from 115 to 164 kJ/mol. Of these methods, the column reactor approach utilizing peak area measurements (referred to as PACR, for "peak area, column reactor") is found to be far superior in terms of its speed, robustness, and its accuracy in determining Ea. The PACR method's effectiveness can be largely attributed to the mathematical treatment that is described in the approach. © 2004 Wiley Periodicals, Inc. Int J Chem Kinet 36: 386,393, 2004 [source]


    Theoretical studies on the mechanism and kinetics of the reaction of F atom with NCO radical

    INTERNATIONAL JOURNAL OF CHEMICAL KINETICS, Issue 2 2003
    Zheng-Yu Zhou
    The reaction of a F atom with an NCO radical was studied at 6-311+g* level, using DFT methods. All geometries, vibrational frequencies, and energies of different stationary points were calculated by HF, UMP2, and DFT methods, and the results agreed with the experimental values. The vibrational frequencies and vibrational modes of the reactant, intermediates, transition states, and products were calculated and the changes of these frequencies and modes were analyzed. Simultaneously, the vibrational modes of various species were assigned. The relationship and the change among these confirmed the mechanism of the reaction and the process of electron transfer. The major channel for the reaction was found to be the cis-channel. At the same time the rate constant was estimated. A new method of analyzing reaction mechanism is also presented. © 2002 Wiley Periodicals, Inc. Int J Chem Kinet 35: 52,60, 2003 [source]


    Solvent and structural effects on the oxidation of 2,6-diphenyl-piperidin-4-ones by quinolinium chlorochromate

    INTERNATIONAL JOURNAL OF CHEMICAL KINETICS, Issue 10 2002
    S. Saravana Kanna
    The kinetics of oxidation of 3-R-2,6-diphenyl-piperidin-4-ones (where R = H, Me, Et, and i -Pr) by quinolinium chlorochromate has been studied under pseudo-first-order conditions in different pure (protic and aprotic) solvents. The rate data is correlated with different solvent parameters using linear multiple regression analysis. From the regression coefficients, information on the solvent,reactant and the solvent,transition state interactions is obtained and the solvation models are proposed. Reasons for the difference in reactivity with structure are also discussed. © 2002 Wiley Periodicals, Inc. Int J Chem Kinet 34: 585,588, 2002 [source]


    Catalytic cracking, dehydrogenation, and aromatization of isobutane over Ga/HZSM-5 and Zn/HZSM-5 at low pressures

    INTERNATIONAL JOURNAL OF CHEMICAL KINETICS, Issue 8 2002
    Yanping Sun
    Isobutane cracking, dehydrogenation, and aromatization over Ga/HZSM-5 and Zn/HZSM-5 has been investigated in a Knudsen cell reactor and the kinetics of the primary reaction steps for isobutene and propene formation have been accurately determined. Although cracking is the dominant reaction channel, with propene and methane being primary products, methane formation is significantly less than propene formation. This indicates that a proportion of the cracking proceeds via Lewis acid attack at CC bonds, and not just via alkanium ion formation at Bronsted acid sites. This is particularly apparent over Zn/HZSM-5. Intrinsic rate constants for cracking, calculated from the rate of propene formation, are and for dehydrogenation, calculated from the rate of isobutene formation, are Large preexponential factors for cracking and dehydrogenation over Ga/HZSM-5 indicate that either the coverage of active sites is significantly less than the coverage of exposed sites or the intrinsic reaction step involves a large entropy change between reactant and transition state. For Zn/HZSM-5 the small preexponential factors suggest either small entropy changes during activation, perhaps initiated by Lewis acid sites, or a steady-state distribution of active and exposed sites is rapidly reached. Differences in intrinsic activation energies may reflect the ratio of Lewis and Bronsted acid sites on the respective catalyst surfaces. Aromatization is more prolific over Ga/HZSM-5 than over Zn/HZSM-5 under the low-pressure conditions. © 2002 Wiley Periodicals, Inc. Int J Chem Kinet 34: 467,480, 2002 [source]


    The reaction between ethyl and molecular oxygen II: Further analysis

    INTERNATIONAL JOURNAL OF CHEMICAL KINETICS, Issue 11 2001
    James A. Miller
    The present investigation is a rather substantial extension and elaboration of our previous work on the same reaction. In this article we accomplish four primary objectives: 1.We show quantitatively how sensitive the high-temperature rate coefficient k(T) is to E02, the threshold energy of the transition state for direct molecular elimination of HO2 from ethylperoxy radical (C2H5O2), thus deducing a value of E02=,3.0 kcal/mol (measured from reactants). 2.We derive the result that k0(T) , k,,(T) in the high-temperature regime, where k0(T) is the zero-pressure rate coefficient, and k,,(T) is the infinite-pressure rate coefficient for the bimolecular channel. 3.Most importantly, we discuss the three different regimes of the reaction (low-temperature, transition, and high-temperature) in terms of the eigenvectors and eigenvalues of G, the transition matrix of the master equation. The transition regime is shown to be a region of avoided crossing between the two chemically significant eigenvalue curves in which the thermal rate coefficient k (T ,p) jumps from one eigenvalue to the other. This jump is accompanied by a "mixing" of the corresponding eigenvectors, through which both eigenvectors deplete the reactant. The onset of the high-temperature regime is triggered by reaching the "stabilization limit" of the ethylperoxy adduct, a limit that is induced by a shift in equilibrium of the stabilization reaction. Our identification of the prompt and secondary HO2 formed by the reaction with these eigenvalue/eigenvector pairs leads to good agreement between theory and the experiments of Clifford et al. (J Phys Chem A 2000, 104, 11549,11560). 4.Lastly, we describe the master equation results in terms of a set of elementary reactions and phenomenological rate coefficients. © 2001 John Wiley & Sons, Inc. Int J Chem Kinet 33: 732,740, 2001 [source]


    Micellar catalysis on the redox reaction of glycolic acid with chromium(VI)

    INTERNATIONAL JOURNAL OF CHEMICAL KINETICS, Issue 6 2001
    Kabir-ud-Din
    Chromium(VI) oxidation of glycolic acid in the absence and presence of cetyltrimethylammonium bromide (CTAB) and cetylpyridinium bromide (CPB) followed the same mechanism as shown by kinetic study. The reaction followed second-order kinetics, first-order in each reactant. The oxidation is strongly catalyzed by manganese(II) and cationic micelles of CTAB or CPB. The catalytic effect of micelles can be fitted to a model in which the reaction rate depends upon the concentration of both reactants in the micellar pseudophase. Some added inorganic salts (NaCl, NaBr, NaNO3, and Na2SO4) reduce the micellar catalysis by excluding glycolic acid from the reaction site. The reactivity of glycolic acid towards chromium(VI) has been discussed and also compared with those obtained previously for the reaction between chromium(VI) and the reductants oxalic and lactic acids. On the basis of the observed results, probable mechanisms have been proposed. © 2001 John Wiley & Sons, Inc. Int J Chem Kinet 33: 377,386, 2001 [source]


    Studies on pyrolysis of vegetable market wastes in presence of heat transfer resistance and deactivation

    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, Issue 9 2005
    Ruby Ray
    Abstract In the present investigation, the pyrolysis of predried vegetable market waste (dp=5.03 mm) has been studied using a cylindrical pyrolyser having diameter of 250 mm under both isothermal and non-isothermal conditions within the temperature range of 523,923 K with an intention to investigate the effective contribution of different heat transfer controlling regime namely intra-particle, external along with kinetically control regime on the overall global rate of pyrolysis. Thermogravimetric method of analysis was utilized to obtain experimental data for both isothermal and non-isothermal cases by coupling a digital balance with the pyrolyser. The pyrolysis of vegetable market waste has been observed to exhibit deactivated concentration independent pyrolysis kinetics, analogous to catalytic poisoning, throughout the entire range of study. The deactivation is of 1st order up to 723 K and follows the 3rd order in the temperature range of 723reactant and products have been simulated following the similar procedure followed under isothermal conditions. When experimental data and simulated values are compared, it is observed that unlike the case of isothermal condition, the global pyrolysis rate is controlled by intra-particle heat transfer resistance. Copyright © 2005 John Wiley & Sons, Ltd. [source]


    Theoretical study of the mechanism of CH2CO + CN reaction

    INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, Issue 4 2006
    Hao Sun
    Abstract The potential energy surface information of the CH2CO + CN reaction is obtained at the B3LYP/6-311+G(d,p) level. To gain further mechanistic knowledge, higher-level single-point calculations for the stationary points are performed at the QCISD(T)/6-311++G(d,p) level. The CH2CO + CN reaction proceeds through four possible mechanisms: direct hydrogen abstraction, olefinic carbon addition,elimination, carbonyl carbon addition,elimination, and side oxygen addition,elimination. Our calculations demonstrate that R,IM1,TS3,P3: CH2CN + CO is the energetically favorable channel; however, channel R,IM2,TS4,P4: CH2NC + CO is considerably competitive, especially as the temperature increases (R, IM, TS, and P represent reactant, intermediate, transition state, and product, respectively). The present study may be helpful in probing the mechanism of the CH2CO + CN reaction. © 2005 Wiley Periodicals, Inc. Int J Quantum Chem, 2006 [source]


    Theoretical study of the reactions BF3 + BX, where X = H or N

    INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, Issue 5 2005
    Patrícia R. P. Barreto
    Abstract This work presents the rate constant for the gas-phase reaction BF3 + BX, where X = H or N, over the temperature range of 200,4,000 K. Conventional transition state theory (TST) is used to study these reactions. Geometries, frequencies, and the potential energy for reactant, products, and saddle point are obtained from accurate electronic structure calculations performed with the GAUSSIAN 98 program. The reaction rate for these reactions are determined using a simple code developed for this task. © 2005 Wiley Periodicals, Inc. Int J Quantum Chem, 2005 [source]


    Convenient expression of the rate constant for nonadiabatic transition

    INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, Issue 1 2005
    Yoshishige Okuno
    Abstract We derived a convenient expression of the rate constant for nonadiabatic transitions, with the intention of making it possible and practical to calculate the rate constant. For this derivation, we first assume that the seam, at which the adiabatic potential energy surfaces of reactant and product electronic states exhibit an avoided crossing, corresponds to the dividing surface of the nonadiabatic transition. Second, we use the probability that a nonadiabatic transition occurs in the seam. Third, the partition function in the seam is described by the local profile of the adiabatic potential energy surfaces of both the reactant and product electronic states. The rate constant expression thus derived not only gives significant insight into understanding nonadiabatic transitions, but also makes it possible to obtain a rough estimate of the rate constant. © 2004 Wiley Periodicals, Inc. Int J Quantum Chem, 2005 [source]


    Characterization of a photocatalytic reaction in a continuous-flow recirculation reactor system

    JOURNAL OF CHEMICAL TECHNOLOGY & BIOTECHNOLOGY, Issue 6 2006
    Fumihide Shiraishi
    Abstract A continuous-flow recirculation mode, generally called a recycle mode, is known to be practically meaningless except when the reactant is separated from the product at the reactor exit or when the reaction is autocatalytic, because when simply circulating a small amount of the fluid containing a reactant, the reactant concentration in this mode is lowered due to mixing of the fluid at the reactor entrance, leading to a decrease in the conversion at the reactor exit. This mode may, however, be meaningful in photocatalytic reactions with very large film-diffusional resistance. To indicate the validity of this estimation, therefore, characteristics of a continuous-flow recirculation reactor have been investigated both theoretically and experimentally. As a result, it is found that by increasing the circulation flow rate the conversion and productivity in this reactor is higher than that in a continuous-flow reactor because the film-diffusional resistance is remarkably reduced. Copyright © 2006 Society of Chemical Industry [source]


    Performance of fractionating reactors in the absence of rate limitations

    JOURNAL OF CHEMICAL TECHNOLOGY & BIOTECHNOLOGY, Issue 9 2004
    Jeroen L den Hollander
    Abstract A fractionating reactor for equilibrium-limited reactions is studied theoretically. Reactant A is fed in the center of the countercurrent fractionating system. Product P is effectively transported with the auxiliary phase, while product Q is effectively transported with the main phase, in which the reaction takes place. Model calculations were based on partition and reaction equilibrium at all stages. These show that if the initial reactant concentration and the flow rates are properly selected, the extent of conversion will significantly exceed the corresponding batch conversion. To approach complete conversion in the fractionating reactor, and to recover both products in a pure form, net transport of reactant in either of the countercurrent directions should be prevented. However, irrespective of the number of equilibrium stages, this situation cannot be fully reached when the reactant feed stream is too large (compared with the main and auxiliary streams). Nonetheless, one of the two products may be recovered in a pure form even for such large feed streams. Copyright © 2004 Society of Chemical Industry [source]


    Wet chemical synthesis of low bulk density aluminium hydroxide powder

    JOURNAL OF CHEMICAL TECHNOLOGY & BIOTECHNOLOGY, Issue 5 2003
    JK Pradhan
    Abstract Fine, low bulk density aluminium hydroxide powdered gel was prepared by the mild base hydrolysis of an aqueous solution of aluminium sulfate with hydrazine hydrate. Parameters such as method of addition of reactant, initial concentration of Al3+, mole ratio, final pH and hydrolysis temperature have a profound effect on the lightness and particle size of the powder. Optimized conditions showed that the final pH, Al3+ concentration and method of addition of reactant have a major contribution on the formation of lighter grade powder. Experiments conducted using other bases also produced lighter particles under similar conditions. Deviation from the optimized conditions led to formation of a higher bulk density product. Copyright © 2003 Society of Chemical Industry [source]


    Formation of 8-nitroguanine and 8-oxoguanine due to reactions of peroxynitrite with guanine

    JOURNAL OF COMPUTATIONAL CHEMISTRY, Issue 8 2007
    N. R. Jena
    Abstract Reactions of peroxynitrite with guanine were investigated using density functional theory (B3LYP) employing 6-31G** and AUG-cc-pVDZ basis sets. Single point energy calculations were performed at the MP2/AUG-cc-pVDZ level. Genuineness of the calculated transition states (TS) was tested by visually examining the vibrational modes corresponding to the imaginary vibrational frequencies and applying the criterion that the TS properly connected the reactant and product complexes (PC). Genuineness of all the calculated TS was further ensured by intrinsic reaction coordinate (IRC) calculations. Effects of aqueous media were investigated by solvating all the species involved in the reactions using the polarizable continuum model (PCM). The calculations reveal that the most stable nitro-product complex involving the anion of 8-nitroguanine and a water molecule i.e. 8NO2G, + H2O can be formed according to one reaction mechanism while there are two possible reaction mechanisms for the formation of the oxo-product complex involving 8-oxoguanine and anion of the NO2 group i.e. 8OG + NO2,. The calculated relative stabilities of the PC, barrier energies of the reactions and the corresponding enthalpy changes suggest that formation of the complex 8OG + NO2, would be somewhat preferred over that of the complex 8NO2G, + H2O. The possible biological implications of this result are discussed. © 2007 Wiley Periodicals, Inc. J Comput Chem 2007 [source]


    Low barrier kinetics: Dependence on observables and free energy surface

    JOURNAL OF COMPUTATIONAL CHEMISTRY, Issue 2 2006
    Hairong Ma
    Abstract Dynamics on free energy surfaces with high activation barriers are usually treated by few-state kinetics models, yielding characteristic rate coefficients and amplitudes depending on the connectivity of the states. When the barriers are low (<3 kT), the assumption of instantaneous equilibration of the transition state, and hence, the few-state kinetics treatment, break down. Langevin dynamics is used here to explore the characteristic trends that occur in such cases, as a function of barrier height, number of barriers, dimensionality of the free energy surface, and switching functions that describe how spectroscopic probes vary from reactant to product. The result is a systematic phenomenological description of low barrier kinetics and dynamics. © 2005 Wiley Periodicals, Inc. J Comput Chem 27: 125,134, 2006 [source]


    Comparison of linear-scaling semiempirical methods and combined quantum mechanical/molecular mechanical methods for enzymic reactions.

    JOURNAL OF COMPUTATIONAL CHEMISTRY, Issue 14 2002

    Abstract QM/MM methods have been developed as a computationally feasible solution to QM simulation of chemical processes, such as enzyme-catalyzed reactions, within a more approximate MM representation of the condensed-phase environment. However, there has been no independent method for checking the quality of this representation, especially for highly nonisotropic protein environments such as those surrounding enzyme active sites. Hence, the validity of QM/MM methods is largely untested. Here we use the possibility of performing all-QM calculations at the semiempirical PM3 level with a linear-scaling method (MOZYME) to assess the performance of a QM/MM method (PM3/AMBER94 force field). Using two model pathways for the hydride-ion transfer reaction of the enzyme dihydrofolate reductase studied previously (Titmuss et al., Chem Phys Lett 2000, 320, 169,176), we have analyzed the reaction energy contributions (QM, QM/MM, and MM) from the QM/MM results and compared them with analogous-region components calculated via an energy partitioning scheme implemented into MOZYME. This analysis further divided the MOZYME components into Coulomb, resonance and exchange energy terms. For the model in which the MM coordinates are kept fixed during the reaction, we find that the MOZYME and QM/MM total energy profiles agree very well, but that there are significant differences in the energy components. Most significantly there is a large change (,16 kcal/mol) in the MOZYME MM component due to polarization of the MM region surrounding the active site, and which arises mostly from MM atoms close to (<10 Å) the active-site QM region, which is not modelled explicitly by our QM/MM method. However, for the model where the MM coordinates are allowed to vary during the reaction, we find large differences in the MOZYME and QM/MM total energy profiles, with a discrepancy of 52 kcal/mol between the relative reaction (product,reactant) energies. This is largely due to a difference in the MM energies of 58 kcal/mol, of which we can attribute ,40 kcal/mol to geometry effects in the MM region and the remainder, as before, to MM region polarization. Contrary to the fixed-geometry model, there is no correlation of the MM energy changes with distance from the QM region, nor are they contributed by only a few residues. Overall, the results suggest that merely extending the size of the QM region in the QM/MM calculation is not a universal solution to the MOZYME- and QM/MM-method differences. They also suggest that attaching physical significance to MOZYME Coulomb, resonance and exchange components is problematic. Although we conclude that it would be possible to reparameterize the QM/MM force field to reproduce MOZYME energies, a better way to account for both the effects of the protein environment and known deficiencies in semiempirical methods would be to parameterize the force field based on data from DFT or ab initio QM linear-scaling calculations. Such a force field could be used efficiently in MD simulations to calculate free energies. © 2002 Wiley Periodicals, Inc. J Comput Chem 23: 1314,1322, 2002 [source]


    The synthesis of some 3-acylindoles revisited

    JOURNAL OF HETEROCYCLIC CHEMISTRY, Issue 5 2007
    Vedran Hasimbegovic
    A study probing the scope of acylation of indoles with dicarboxylic acids in acetic anhydride has been performed, resulting in products incorporating 3-acylindole- or 1-acylindole motifs depending on the choice of the acid reactant. Synthetically useful results were only obtained from reactions involving malonic acid or Meldrum's acid. Correlations to previous studies have also been made and discussed. [source]


    Determination of 17,-estradiol in bovine plasma: development of a highly sensitive technique by ion trap gas chromatography,tandem mass spectrometry using negative chemical ionization,

    JOURNAL OF MASS SPECTROMETRY (INCORP BIOLOGICAL MASS SPECTROMETRY), Issue 12 2002
    Giancarlo Biancotto
    Abstract A novel approach to the determination of 17,-estradiol in bovine plasma is presented. The observed enhanced sensitivity is gained by the application of tandem mass spectrometry (MS) fragmentation to a stable, well characterized negative ion produced by chemical ionization (methane as reagent gas). A specific derivatizing reactant is employed (pentafluorobenzyl bromide), combined with bis-trimethylsilyltrifluoroacetamide, to favor the formation of a diagnostic precursor negative ion. Plasma samples are purified through a C18 solid phase extraction column and derivatized before gas chromatography,MS analysis. The accuracy and the precision of the method, tested over a set of spiked samples, were satisfactory. The limit of detection was found to be 5 pg ml,1 and the limit of quantification was fixed at 20 pg ml,1. The fragmentation pattern is fully explained and the method is applicable for the official analysis of bovine plasma for the detection of 17,-estradiol according to the European criteria 256/93 and to the draft SANCO/1805/2000 rev. 3. The quantification of incurred positive samples was performed according to the proposed procedure and compared with the results obtained by standardized radio immuno assay; the estimated concentrations were significantly similar. Copyright © 2002 John Wiley & Sons, Ltd. [source]