Home About us Contact | |||
Repulsive Interactions (repulsive + interaction)
Selected AbstractsThe Effect of Electric Field on Pressure Filtration of Ceramic SuspensionsJOURNAL OF THE AMERICAN CERAMIC SOCIETY, Issue 2009Yoshihiro Hirata The consolidation behavior of Al2O3 and indium tin oxide (ITO, 90% In2O3,10% SnO2) particles 150,200 nm in size was examined using a pressure filtration apparatus at a constant compressive rate under an electric field. The relation of applied pressure (,Pt) with volume of dehydrated filtrate (Vf) was compared with the established filtration theory (theory I) for a well-dispersed suspension and the newly developed filtration theory (theory II) for a flocculated suspension. The experimental results without polyelectrolyte dispersant deviated from theory I when ,Pt exceeded a critical pressure (,Ptc). This deviation is associated with the phase transition from a dispersed suspension to a flocculated suspension at ,Ptc. A good agreement was shown between the developed theory II and experimental results after the phase transition. When a dispersant (polyacrylic ammonium, PAA) was added to alumina, ITO, or Al2O3,ITO mixed powder suspensions, the consolidation behavior of the particles was controlled by the dissociation and amounts of adsorbed and free PAA. The addition of a large amount of highly charged PAA enhanced the repulsive interaction between PAA-adsorbed particles, and the consolidation behavior was explained by theory I. The adsorption of neutral PAA on the particles reduced the repulsive interaction, and the consolidation behavior was well explained by theory II. The phase transition from dispersed to flocculated suspension was very sensitive to the electric field during the pressure filtration. The ,Ptc for the suspension with and without PAA decreased drastically when a low electric field was applied. The final packing density of the flocculated particles was greatly increased by the application of a weak electric field. However, the dense structure under high pressure was relaxed to a low-density structure when the stored elastic strain energy was released. [source] Interaction Between Polymer Chains Covalently Fixed to Single-Walled Carbon NanotubesMACROMOLECULAR CHEMISTRY AND PHYSICS, Issue 9 2006Hiromi Kitano Abstract Summary: A single-walled carbon nanotube (SWNT), which had been oxidized with a mixture of nitric acid and sulfuric acid to afford polar groups at its ends, was incubated with an azo-type macroinitiator carrying dextran (DEX), poly(ethylene glycol) (PEG) or poly(N -vinylpyrrolidone) (PVPy) chains at 70,°C. Similarly, the oxidized SWNT was incubated with 2,2,-azoisobutyronitrile and acrylic acid (HAA) or N -vinylpyrrolidone at 70,°C. Due to the large radical trapping ability of SWNT, the polymer chains corresponding to the cloven macroinitiator (PEG, DEX or PVPy) and the propagating polymer chains (poly(acrylic acid) (HPAA) or PVPy) were covalently fixed to the surface of the SWNTs. The hydrophilic polymer-modified SWNTs could be stably dispersed in water. Furthermore, the SWNTs modified with PEG and DEX sedimented in the presence of free DEX and PEG, respectively, whereas there was no precipitation of the PEG- and DEX-modified SWNTs in the presence of the same kind of free polymer. This seemed to be related to the phase separation phenomena in water soluble DEX and PEG systems induced by the repulsive interaction between PEG and DEX molecules. However, the mixture of two kinds of polymer-modified SWNTs (PEG-SWNT and DEX-SWNT) did not show noticeable phase separation, probably due to steric hindrance for the efficient repulsive polymer-polymer interaction by fixation to the gigantic SWNTs. Furthermore, upon mixing the dispersions of HPAA-SWNT and PEG-SWNT or PVPy-SWNT, the turbidity of the dispersions gradually increased, while no increase in turbidity of the dispersion mixture was observed in the presence of dimethyl sulfoxide, indicating hydrogen bonding between the HPAA and PEG or PVPy chains on the surface of the SWNTs. The modification methods examined in this work would be promising to give various functions to SWNT. Susceptible processes of radical trap on SWNT surface. [source] Conformational and tautomeric eccentricities of 2-acetyl-1,8-dihydroxynaphthalenesMAGNETIC RESONANCE IN CHEMISTRY, Issue 2 2007Poul Erik Hansen Abstract Tautomerism in aromatic systems with oxygen substitutents is rare. This is investigated in 2-acetyl-1,8-dihydroxy-3,6-dimethylnaphthalene (1) and in 2,7-diacetyl-1,8-dihydroxy-3,6-dimethylnaphthalene (2). The tautomeric nature of 2-acetyl-1,8-dihydroxy-3,6-dimethylnaphthalene is supported by long-range hydrogen,hydrogen coupling between the OH-1 and the OH-8 and by the isotope effects on 13C caused by deuteration at the CH3CO methyl group. Compound 2 participates in a degenerate equilibrium between two equivalent nonsymmetrical rotamers (2A and 2B), each having two intramolecular O···HO hydrogen bonds: one involving an acetyl oxygen and the neighboring hydroxyl group, and the other between the oxygen centers at positions 1 and 8. In addition, each rotamer is involved in a tautomeric equilibrium, with a structure having an OH-substituted exocyclic double bond (2AT or 2BT). DFT calculations for a large set of compounds highlight the factors controlling the unusual rotational and tautomeric behaviors. A very important factor seems to be the repulsive interaction between the O -1 and O -8 centers, which is modulated by formation of an OH-1···O-8 or OH-8···O1 hydrogen bond. Steric interactions, mesomeric release of electrons from the oxygen at position 8, and a strong OH···O···C hydrogen bond are other factors. Solid-state 13C NMR spectra of 2,7-diacetyl-1,8-dihydroxy-3,6-dimethylnaphthalene at different temperatures demonstrated no averaging in the solid, whereas partially deuterated 2-acetyl-1,8-dihydroxy-3,6-dimethylnaphthalene showed an isotope effect at C-1 of 1.5 ppm, indicating tautomerism in the solid state. Copyright © 2006 John Wiley & Sons, Ltd. [source] Mixtures of correlated bosons and fermions: Dynamical mean-field theory for normal and condensed phasesANNALEN DER PHYSIK, Issue 9 2009K. Byczuk Abstract We derive a dynamical mean-field theory for mixtures of interacting bosons and fermions on a lattice (BF-DMFT). The BF-DMFT is a comprehensive, thermodynamically consistent framework for the theoretical investigation of Bose-Fermi mixtures and is applicable for arbitrary values of the coupling parameters and temperatures. It becomes exact in the limit of high spatial dimensions d or coordination number Z of the lattice. In particular, the BF-DMFT treats normal and condensed bosons on equal footing and thus includes the effects caused by their dynamic coupling. Using the BF-DMFT we investigate two different interaction models of correlated lattice bosons and fermions, one where all particles are spinless (model I) and one where fermions carry a spin one-half (model II). In model I the local, repulsive interaction between bosons and fermions can give rise to an attractive effective interaction between the bosons. In model II it can also lead to an attraction between the fermions. [source] High-Performance Air-Stable n-Type Organic Transistors Based on Core-Chlorinated Naphthalene Tetracarboxylic DiimidesADVANCED FUNCTIONAL MATERIALS, Issue 13 2010Joon Hak Oh Abstract Core-chlorinated naphthalene tetracarboxylic diimides (NDIs) with fluoroalkyl chains are synthesized and employed for n-channel organic thin-film transistors (OTFTs). Structural analyses of the single crystals and thin films are performed and their charge-transport behavior is investigated in terms of structure,property relationships. NDIs with two chlorine substituents are shown to exhibit a herringbone structure with a very close ,-plane distance (3.3,3.4,Å), a large ,-stack overlap (slipping angle ca. 62°), and high crystal densities (2.046,2.091,g,cm,3). These features result in excellent field-effect mobilities of up to 1.43,cm2,V,1,s,1 with minimal hysteresis and high on,off ratios (ca. 107) in air. This is similar to the highest n-channel mobilities in air reported so far. Despite the repulsive interactions of bulky Cl substituents, tetrachlorinated NDIs adopt a slip-stacked face-to-face packing with an interplanar distance of around 3.4,Å, resulting in a high mobility (up to 0.44,cm2,V,1,s,1). The air-stability of dichlorinated NDIs is superior to that of tetrachlorinated NDIs, despite of their higher LUMO levels. This is closely related to the denser packing of the fluorocarbon chains of dichlorinated NDIs, which serves as a kinetic barrier to the diffusion of ambient oxidants. Interestingly, these NDIs show an optimal performance either on bare SiO2 or on octadecyltrimethoxysilane (OTS)-treated SiO2, depending on the carbon number of the fluoroalkyl chains. Their synthetic simplicity and processing versatility combined with their high performance make these semiconductors highly promising for practical applications in flexible electronics. [source] Cumulative ,-, interaction triggers unusually high stabilization of linear hydrocarbons inside the single-walled carbon nanotubeINTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, Issue 12 2007T. C. Dinadayalane Abstract The interactions of linear hydrocarbons C2nH4 and C2nH2 (n = 1,4) with a finite-length armchair (5,5) single-walled carbon nanotube have been investigated using HF and MP2 methods in conjunction with 6-31G(d) basis set, and molecular mechanics (MM) with MM2 force field. In all cases, the results obtained at MP2/6-31G(d) level show stabilization of these supramolecular systems, contrary to the repulsive interactions obtained with the HF method. The interaction energies computed using MM with MM2 force field are in close agreement with the results obtained using the MP2/6-31G(d) level. They increase gradually as the length of linear hydrocarbon chain increases. The present study indicates that cumulative ,-, interaction is the origin for the exceptionally high stabilization of the long nanotube-hydrocarbon complexes. Mulliken population analysis reveals a very small charge transfer between the nanotube and the guest. Essentially there is no change in HOMO-LUMO energy gap by the insertion of linear hydrocarbons. © 2007 Wiley Periodicals, Inc. Int J Quantum Chem, 2007 [source] Relative energies of conformations and sulfinyl oxygen-induced pentacoordination at silicon in 4-bromo- and 4,4-dibromo-4-silathiacyclohexane 1-oxide: A computational studyINTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, Issue 4 2005Fillmore Freeman Abstract The equilibrium geometries and relative energies of the chair, twist, and boat conformations of cis - and trans -4-bromo-4-silathiacyclohexane 1-oxide and 4,4-dibromo-4-silathiacyclohexane 1-oxide have been calculated at the B3LYP/6-311G(d,p) and MP2/6-311+G(d,p) theoretical levels. The axial (SO) chair conformers of the sulfoxides are of lower energy than the chair conformers of the corresponding equatorial (SO) sulfoxides. The chair conformer of the axial (SO) trans -4-bromo-4-silathiacyclohexane 1-oxide is only 0.10 kcal/mol more stable than the corresponding 1,4-boat conformer which is stabilized by a transannular coordination of the sulfinyl oxygen with silicon that results in trigonal bipyramidal geometry at silicon. The 1,4-boat structure of equatorial (SO) trans -4-bromo-4-silathiacyclohexane 1-oxide is a transition state and is 5.77 kcal/mol higher in energy than the respective chair conformer. The 1,4-boat conformer of axial (SO) 4,4-dibromo-4-silathiacyclohexane 1-oxide is also stabilized by transannular coordination of the sulfinyl oxygen and silicon, but it is 4.31 kcal/mol higher in energy than the corresponding chair conformer. The relatively lower stability of the 1,4-boat conformer of 4,4-dibromo-4-silathiacyclohexane 1-oxide may be due to repulsive interactions of the axial halogen and sulfinyl oxygen atom. The relative energies of the conformers and transition states are discussed in terms of hyperconjugative interactions, orbital interactions, nonbonded interactions, and transannular sulfinyl oxygen-silicon coordination. © 2005 Wiley Periodicals, Inc. Int J Quantum Chem, 2005 [source] The two-Yukawa model and its applications: the cases of charged proteins and copolymer micellar solutionsJOURNAL OF APPLIED CRYSTALLOGRAPHY, Issue 2007Sow-Hsin Chen Charged and uncharged colloidal systems are known from experiment to display an extremely rich phase behavior, which is ultimately determined by the effective pair potential between particles in solution. As a confirmation, the recent striking observation of an equilibrium cluster phase in charged globular protein solutions [Stradner, Sedgwick, Cardinaux, Poon, Egelhaaf & Schurtenberger (2004). Nature, 432, 492,495] has been interpreted as the effect of competing short-range attractive and long-range repulsive interactions. The `two-Yukawa (2Y) fluid' model assumes an interparticle potential consisting of a hard core plus an attractive and a repulsive Yukawa tail. We show that this rather simple model can indeed explain satisfactorily the structural properties of diverse colloidal materials, measured in small-angle neutron scattering (SANS) experiments, including the cases of equilibrium cluster formation and soft-core repulsion. We apply this model to the analysis of SANS data from horse-heart cytochrome c protein solutions (whose effective potential can be modeled as a hard-sphere part plus a short-range attraction and a weaker screened electrostatic repulsion) and micellar solutions of a triblock copolymer (whose effective potential can be modeled as a hard-sphere part plus a repulsive shoulder and a short-range attraction). The accuracy of the 2Y model predictions is successfully tested against Monte Carlo simulations in both cases. [source] A force-field description of short-range repulsions for high density alkane molecular dynamics simulationsJOURNAL OF COMPUTATIONAL CHEMISTRY, Issue 16 2004Joseph M. Hayes Abstract The use of Buckingham (exp-6) van der Waals potentials in molecular dynamics (MD) simulations can quite successfully reproduce experimental thermodynamic data at low densities. However, they are less successful in producing a description of the repulsive regions of the potential energy surface (PES) that is in accord with the results of high-level ab initio computations. We show that Morse potentials can be parameterized to give excellent fits to both the attractive and repulsive regions of the PES. The best set of alkane van der Waals Morse function parameters reported to date for the description of nonbond repulsive interactions is presented, as determined by comparison with both ab initio and experimental results. C,C, H,H and C,H atom-pair potentials employing parameter sets based on the use of the geometric mean in the fitting procedure are found to be portable from methane to n- butane. Fitting to a combination of methane dimer interaction energies and forces from ab initio calculations yields parameter sets whose performance is superior to those determined from the interaction energies alone. Used in MD simulations, our newly developed parameter sets predict thermodynamic functions that show better agreement with experiment than those based on parameter sets in common use. © 2004 Wiley Periodicals, Inc. J Comput Chem 25: 1953,1966, 2004 [source] Aromatic stabilization in heterofullerenes C48X12 (X,=,N, P, B, Si),JOURNAL OF PHYSICAL ORGANIC CHEMISTRY, Issue 10 2003Zhongfang Chen Abstract B3LYP density functional calculations were performed on two S6 symmetrical isomers (I and II) of C48X12 (X=N, B, P, Si) heterofullerenes, and their global and local aromaticity were evaluated by nucleus-independent chemical shifts (NICS). Despite the unfavorable heteroatom repulsive interactions, isomer II is more stable than I owing to the combination of global and local aromaticity. The latter arises from the presence of triphenylene units in isomer II. The aromatic stabilization effects found in this study should be taken into account when predicting the most stable isomers of heterofullerenes. The same is true for predictions of the isomers of fullerene adducts such as C60Cl12. Copyright © 2003 John Wiley & Sons, Ltd. [source] Influence of Impurities on Dispersion Properties of Bayer AluminaJOURNAL OF THE AMERICAN CERAMIC SOCIETY, Issue 12 2004J. Kiennemann Among the different impurities contained in Bayer alumina (Ca, Fe, Na, Si, Mg), calcium was found to greatly influence the dispersion of alumina particles in water. Up to 90% of calcium is dissolved at acidic pH, whereas calcium remains on the alumina surface in the basic pH range and screens the negative Al,O, charges. The presence of calcium, through reducing repulsive interactions between particles, has a negative effect on the dispersion of alumina. The adsorption of the Na+ salt of poly(acrylic acid) (PAA-Na) is strongly influenced by Ca2+/PAA-Na interactions in suspension with an increase of the maximum adsorbed amount of PAA-Na in the presence of calcium. The amount of PAA-Na needed to reach a high electrostatic repulsion and a minimum of viscosity is 2 times higher in the presence of 400 pm calcium than for a low calcium content (,80 ppm). Finally, with an appropriate amount of PAA-Na, a similar state of dispersion can be reached with or without the presence of calcium. [source] Stereoselectivity of Pseudomonas cepacia lipase toward secondary alcohols: A quantitative modelPROTEIN SCIENCE, Issue 6 2000Tanja Schulz Abstract The lipase from Pseudomonas cepacia represents a widely applied catalyst for highly enantioselective resolution of chiral secondary alcohols. While its stereopreference is determined predominantly by the substrate structure, stereoselectivity depends on atomic details of interactions between substrate and lipase. Thirty secondary alcohols with published E values using P. cepacia lipase in hydrolysis or esterification reactions were selected, and models of their octanoic acid esters were docked to the open conformation of P. cepacia lipase. The two enantiomers of 27 substrates bound preferentially in either of two binding modes: the fast-reacting enantiomer in a productive mode and the slow-reacting enantiomer in a nonproductive mode. Nonproductive mode of fast-reacting enantiomers was prohibited by repulsive interactions. For the slow-reacting enantiomers in the productive binding mode, the substrate pushes the active site histidine away from its proper orientation, and the distance d(HN, , Oalc) between the histidine side chain and the alcohol oxygen increases. d(HN, , Oalc) was correlated to experimentally observed enantioselectivity: in substrates for which P. cepacia lipase has high enantioselectivity (E > 100), d(HN, , Oalc) is>2.2 Å for slow-reacting enantiomers, thus preventing efficient catalysis of this enantiomer. In substrates of low enantioselectivity (E < 20), the distance d(HN, , Oalc) is less than 2.0 Å, and slow- and fast-reacting enantiomers are catalyzed at similar rates. For substrates of medium enantioselectivity (20 < E< 100), d(HN, , Oalc) is around 2.1 Å. This simple model can be applied to predict enantioselectivity of P. cepacia lipase toward a broad range of secondary alcohols. [source] Tiling among stereotyped dendritic branches in an identified Drosophila motoneuron,,THE JOURNAL OF COMPARATIVE NEUROLOGY, Issue 12 2010F. Vonhoff Abstract Different types of neurons can be distinguished by the specific targeting locations and branching patterns of their dendrites, which form the blueprint for wiring the brain. Unraveling which specific signals control different aspects of dendritic architecture, such as branching and elongation, pruning and cessation of growth, territory formation, tiling, and self-avoidance requires a quantitative comparison in control and genetically manipulated neurons. The highly conserved shapes of individually identified Drosophila neurons make them well suited for the analysis of dendritic architecture principles. However, to date it remains unclear how tightly dendritic architecture principles of identified central neurons are regulated. This study uses quantitative reconstructions of dendritic architecture of an identified Drosophila flight motoneuron (MN5) with a complex dendritic tree, comprising more than 4,000 dendritic branches and 6 mm total length. MN5 contains a fixed number of 23 dendritic subtrees, which tile into distinct, nonoverlapping volumes of the diffuse motor neuropil. Across-animal comparison and quantitative analysis suggest that tiling of the different dendritic subtrees of the same neuron is caused by competitive and repulsive interactions among subtrees, perhaps allowing different dendritic compartments to be connected to different circuit elements. We also show that dendritic architecture is similar among different wildtype and GAL4 driver fly lines. Metric and topological dendritic architecture features are sufficiently constant to allow for studies of the underlying control mechanisms by genetic manipulations. Dendritic territory and certain topological measures, such as tree compactness, are most constant, suggesting that these reflect the intrinsic molecular identity of the neuron. J. Comp. Neurol. 518:2169,2185, 2010. © 2010 Wiley-Liss, Inc. [source] Architecture of crystal structures from square planesACTA CRYSTALLOGRAPHICA SECTION B, Issue 5 2000J. Hauck The crystal structures of ordered b.c.c. (body-centered cubic), f.c.c. (face-centered cubic) or primitive cubic alloys and related NaCl, ZnS or CaF derivative structures are characterized by the self-coordination numbers , of the A atoms with A atoms. Structures with identical and values for all A atoms are at the corners of and structure maps, and can be analyzed for attractive or repulsive interactions of A atoms. Most observed structures are at the borders of the structure map and can be obtained by ,10 different combinations of structural units. The different combination mechanisms explain e.g. the shear structures of CuAu II or and the occurrence of vacancies in NaCl-related structures like NbO. [source] An Improvement in the Bending Ability of a Hinged Trisaccharide with the Assistance of a Sugar,,Sugar InteractionCHEMISTRY - A EUROPEAN JOURNAL, Issue 22 2005Hideya Yuasa Prof. Abstract Hinged di- and trisaccharides incorporating 2,4-diamino-,- D -xylopyranoside as a hinge unit (Hin) were synthesized. Bridging of the diamino group of Hin by carbonylation or chelation to a metal ion results in a conformational change from 4C1 to 1C4, which in turn causes a bending of the oligosaccharides. In this study, the bending abilities of the hinged oligosaccharides were compared, in terms of the reactivities toward carbonylation and chelation. Di- or trisaccharides containing a 6- O -glycosylated mannopyranoside or galactopyranoside at their reducing ends had bending abilities similar to that of the Hin monosaccharide, probably because there were neither attractive nor repulsive interactions between the reducing and nonreducing ends. However, when Hin was attached at O2 of methyl mannopyranoside (Man,Me), the bending ability was dependent on the nonreducing sugar and the reaction conditions. Typically, a disaccharide,Hin,(1,2)Man,Me,was difficult to bend under all the tested reaction conditions, and the bent population in the presence of ZnII was only 4,%. On the other hand, a trisaccharide,Man,(1,3)Hin,(1,2)Man,Me,was bent immediately after the addition of ZnII or HgII, and the bent population reached 75,%, much larger than those of all the other hinged trisaccharides ever tested (<40,%). This excellent bending ability suggests an attractive interaction between the reducing and nonreducing ends. The extended conformation was recovered by the addition of triethylenetetramine, a metal ion chelator. Reversible, quick, and efficient bending of the hinged trisaccharide was thus achieved. [source] |