Repulsion

Distribution by Scientific Domains
Distribution within Chemistry

Kinds of Repulsion

  • coulomb repulsion
  • electrostatic repulsion
  • steric repulsion


  • Selected Abstracts


    Influence of Cluster Size on the Structures and Stability of Trimetallic Nitride Fullerenes M3N@C80

    CHEMPHYSCHEM, Issue 6 2006
    Li-Hua Gan Dr.
    Abstract To provide insight into the influence of encaged clusters on the structures and stability of trimetallic nitride fullerenes (TNFs), extensive density functional theory calculations were performed on Sc3N@C80, Y3N@C80, and La3N@C80 as well as their encaged clusters. The calculated results demonstrated that both Sc3N and Y3N units are planar, whereas La3N units are pyramidal inside C80 -Ih, and that both of the Y3N@C80 and La3N@C80 cages deform considerably in the planes of Y3 and La3. The calculated results suggest that M,cage attraction/repulsion and M,M repulsion interactions determine the geometries of these three complex molecules and the dynamics of the corresponding encaged clusters. These calculated findings distinctly reveal the influence of the size of the encaged clusters on the structures and stability of TNFs and may rationalize their significant differences in yields and chemical reactivity. [source]


    Development of a high-speed electromagnetic repulsion mechanism for high-voltage vacuum circuit breakers

    ELECTRICAL ENGINEERING IN JAPAN, Issue 1 2008
    Mitsuru Tsukima
    Abstract This paper presents a design and testing of a new high-speed electromagnetic driving mechanism for a high-voltage vacuum circuit breaker (VCB). This mechanism is based on a high-speed electromagnetic repulsion and a permanent magnet spring (PMS). This PMS is introduced instead of the conventional disk spring due to its low spring energy and more suitable force characteristics for VCB application. The PMS has been optimally designed by the 3D nonlinear finite-elements magnetic field analysis and investigated its internal friction and eddy-current effect. Furthermore, we calculated the dynamic of this mechanism coupling with the electromagnetic field and circuit analysis, in order to satisfy the operating characteristics,contact velocity, response time, and so on, required for the high-speed VCB. A prototype VCB, which was built based on the above analysis, shows sufficient operating performance. Finally, the short circuit interruption tests were carried out with this prototype breaker, and we have been able to verify its satisfying performance. © 2008 Wiley Periodicals, Inc. Electr Eng Jpn, 163(1): 34,40, 2008; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/eej.20398 [source]


    Real Time Electrochemical Monitoring of DNA/PNA Dissociation by Melting Curve Analysis

    ELECTROANALYSIS, Issue 14 2009
    Xiaoteng Luo
    Abstract An immobilization-free electrochemical method is reported for real-time monitoring of the DNA hybrid dissociation between a ferrocene labeled peptide nucleic acid (PNA) and a fully-complementary or single-base-mismatched DNA. This method takes advantages of electrostatic charge characteristics and interactions among the neutrally charged PNA, the negatively charged DNA and the negatively charged electrode surface made of indium tin oxide (ITO). When a ferrocene labeled PNA (Fc-PNA) sequence is hybridized to a complementary DNA strand, electrostatic repulsion between the negatively charged PNA/DNA hybrid and the negative ITO surface retards the diffusion of the electroactive Fc to the electrode, resulting in a much reduced electrochemical signal. On the other hand, when the Fc-PNA is dissociated from the hybrid at elevated temperatures, the neutrally charged Fc-PNA easily diffuses to the electrode with an enhanced electrochemical signal. Therefore, an electrochemical melting curve of the Fc-PNA/DNA hybrid can be obtained by measuring the Fc signal with the increasing temperature. This strategy allows monitoring of the dissociation of the DNA hybrid in real time, which might lead to a simple detection method for single nucleotide polymorphism (SNP) analysis. [source]


    Multi-walled carbon nanotube composites with polyacrylate prepared for open-tubular capillary electrochromatography

    ELECTROPHORESIS, Issue 19 2010
    Jian-Lian Chen
    Abstract A new phase containing immobilized carbon nanotubes (CNTs) was synthesized by in situ polymerization of acid-treated multi-walled CNTs using butylmethacrylate (BMA) as the monomer and ethylene dimethacrylate as the crosslinker on a silanized capillary, forming a porous-layered open-tubular column for CEC. Incorporation of CNT nanomaterials into a polymer matrix could increase the phase ratio and take advantage of the easy preparation of an OT-CEC column. The completed BMA-CNT column was characterized by SEM, ATR-IR, and EOF measurements, varying the pH and the added volume organic modifier. In the multi-walled CNTs structure, carboxylate groups were the major ionizable ligands on the phase surface exerting the EOF having electroosmotic mobility, 4.0×104,cm2,V,1,S,1, in the phosphate buffer at pH 2.8 and RSD values (n=5), 3.2, 4.1, and 4.3%, for three replicate capillaries at pH 7.6. Application of the BMA-CNT column in CEC separations of various samples, including nucleobases, nucleosides, flavonoids, and phenolic acids, proved satisfactory upon optimization of the running buffers. Their optima were found in the borate buffers at pH 9.0/50,mM, pH 9.5/10,mM/50% v/v ACN, and pH 9.5/30,mM/10% v/v methanol, respectively. The separations could also be used to assess the relative contributions of electrophoresis and chromatography to the CEC mechanism by calculating the corresponding velocity and retention factors. Discussions about interactions between the probe solutes and the bonded phase included the ,,, interactions, electrostatic repulsion, and hydrogen bonding. Furthermore, a reversed-phase mode was discovered to be involved in the chromatographic retention. [source]


    Decreasing effective nanofluidic filter size by modulating electrical double layers: Separation enhancement in microfabricated nanofluidic filters

    ELECTROPHORESIS, Issue 23 2008
    Hansen Bow
    Abstract Conventional methods for separating biomolecules are based on steric interactions between the biomolecules and randomly oriented gel fibers. The recently developed artificial molecular sieves also rely on steric interactions for separation. In this work, we present an experimental investigation of a method that can be used in these sieves to increase separation selectivity and resolution. This method exploits the electrostatic repulsion between the charged molecules and the charged nanofluidic structure. Although this method has been mentioned in the previous work, it has not been examined in detail. We characterize this method by comparing the selectivity with that achieved in devices with different dimensions. The results of this study are relevant to the optimization of chip-based gel-free biomolecule separation and analysis. [source]


    Standing oral extraction of cheek teeth in 100 horses (1998-2003)

    EQUINE VETERINARY JOURNAL, Issue 2 2005
    P. M. DIXON
    Summary Reasons for performing study: Extraction of cheek teeth (CT) by the conventional repulsion technique requires general anaesthesia and carries a high rate of post operative complications. Consequently, an alternative method of extraction, i.e. orally in standing horses, was evaluated. Hypothesis: The need for and risks of general anaesthesia could be avoided and post extraction sequelae reduced by performing extractions orally in standing horses. Methods: One hundred mainly younger horses (median age 8, range 2-18 years) with firmly attached CT that required extraction because of apical infections, displacements, diastemata, idiopathic fractures and the presence of supernumerary CT had the affected teeth (n = 111) extracted orally under standing sedation. Follow-up information was obtained for all cases, a median of 16 months later. Results: Oral extraction was successful in 89 horses and unsuccessful in 11 due to damage to the CT clinical crown (n = 9) during extraction, for behavioural reasons (n = 1) and because the apex of a partly extracted CT fell back into the alveolus following sectioning (n = 1). Predispositions to extraction-related CT fractures were present in 5 of the 9 cases, i.e. advanced dental caries (n = 2) and pre-existing ,idiopathic' fractures (n = 3). The iatrogenically fractured CT were later repulsed under standing sedation (n = 3) and under general anaesthesia (n = 6). Eighty-one of the remaining 89 horses had successful oral CT extraction with no or minimal intra- or post operative complications occurring. Post operative complications in the other 8 cases included post extraction alveolar sequestration (n = 3), alveolar sequestration and localised osteomyelitis (n = 1), localised osteomyelitis (n = 1), incorporation of alveolar packing material into alveolar granulation tissue (n = 1), and nasal discharge due to continued intranasal presence of purulent food material (n = 1) and to ongoing sinusitis (n = 1). The above sequelae were treated successfully in all cases, with general anaesthesia required in just one case. Following oral extraction, significantly (P<0.001) fewer post operative problems developed in 54 horses with apically infected CT in comparison with 71 previous cases that had repulsion of apically infected CT at our clinic. Conclusions and potential relevance: Oral extraction of cheek teeth is a successful technique in the majority of younger horses with firmly attached CT and greatly reduces the post operative sequelae, compared with CT repulsion. Additionally, the costs and risks of general anaesthesia are avoided. Further experience and refinement in the described protocol could potentially increase the success of this procedure and also reduce the incidence of post operative sequelae. [source]


    Equine dental disease Part 4: a long-term study of 400 cases: apical infections of cheek teeth

    EQUINE VETERINARY JOURNAL, Issue 3 2000
    P. M. Dixon
    Summary Of 400 horses referred because of equine dental disease, 162 suffered from primary apical infections of their cheek teeth (CT), including 92 with maxillary CT infections and 70 with mandibular CT infections. Maxillary swellings and sinus tracts were more common (82 and 26% incidence, respectively) with infections of the rostral 3 maxillary CT, than with infections of the caudal 3 maxillary CT(39 and 5% incidence, respectively). Nasal discharge was more commonly present with caudal (95%) than rostral (23%) maxillary CT infections. Mandibular CT apical infections commonly had mandibular swellings (91%) and mandibular sinus tracts (59%) and these infections were closely related to eruption of the affected CT. A variety of treatments, including medical treatment, apical curettage, repulsion and oral extraction of affected teeth were utilised in these cases, with oral extraction appearing to be most satisfactory. Infections of caudal maxillary CT with a secondary paranasal sinusitis were most refractory to treatment, with a complete response to the initial treatment achieved in just 33% of these cases. Most other cases responded fully to their initial treatment. The long-term response to treatment was good in most cases. [source]


    Origin of the Paramagnetic Properties of the Mixed-Valence Polyoxometalate [GeV14O40]8, Reduced by Two Electrons: Wave Function Theory and Model Hamiltonian Calculations

    EUROPEAN JOURNAL OF INORGANIC CHEMISTRY, Issue 34 2009
    N. Suaud
    Abstract The aim of the work is to give an explanation of the magnetic properties of a mixed-valence [GeV14O40]8, polyoxometalate reduced by two electrons, which, in contrast to what happens in other two-electron-reduced polyoxometalates, does not show any magnetic coupling between the two unpaired electrons. For this purpose, a quantitative evaluation of the microscopic electronic parameters (electron transfer, magnetic coupling, magnetic orbital energy, and Coulomb repulsion) of the mixed-valence polyoxometalate cluster is performed. The parameters are extracted from valence-spectroscopy large configuration interaction (CI) calculations on embedded fragments. Then, these parameters are used in an extended t - J model Hamiltonian suited to model the properties of the whole anion. The analysis of the wave functions of the lowest singlet and triplet states and of the microscopic parameters emphasizes that the electron delocalization in this mixed-valence cluster is such that each unpaired electron is almost trapped in a different half of the polyoxovanadate, thus disabling any exchange interaction between them.(© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2009) [source]


    Theoretical Study on Hetero-Diels,Alder Reaction of Butadiene with Benzaldehyde Catalyzed by Chiral InIII Complexes

    EUROPEAN JOURNAL OF ORGANIC CHEMISTRY, Issue 20 2010
    Xiuli Cao
    Abstract The mechanism of the hetero-Diels,Alder reaction of butadiene with benzaldehyde catalyzed by chiral N,N, -dioxide/In(OTf)3 complexes was studied theoretically by using density functional theory (DFT) and model system. The computational results indicate that the catalyzed reaction proceeded through a concerted mechanism via a highly zwitterionic transition state. The lowest energy barrier was 11.8 kJ,mol,1, which is 63.0 kJ,mol,1 lower than that of the uncatalyzed reaction. The results indicate that the endo approach is advantageous over the exo approach, because exo transitions states suffer from more steric hindrance than the endo transitions states as a result of interactions among the substrates, the trifluoromethanesulfonic group and the R4 groups of the ligand. The (S) configuration was observed predominantly over the (R) form, because there is no distinguishable repulsion between butadiene and the exo amino side or the endo amino side of the ligand. Besides, the interactions between the terminal hydrogen atoms of butadiene and the oxygen atoms of the trifluoromethanesulfonic group make the structure more stable. Thus, the experimental results were explained well by calculation of the chiral N,N, -dioxide/In(OTf)3 complex catalyzed hetero-Diels,Alder reaction at the molecular level. [source]


    1,8-Bis(dialkylamino)-4,5-dinitronaphthalenes and 4,5-Bis(dimethylamino)naphthalene-1,8-dicarbaldehyde as "Push,Pull" Proton Sponges: When and Why Formyl Groups Become Stronger ,-Electron Acceptors than Nitro Groups

    EUROPEAN JOURNAL OF ORGANIC CHEMISTRY, Issue 8 2009
    Valery A. Ozeryanskii
    Abstract Single-crystal X-ray studies of four representatives of "push,pull" proton sponges, namely 1,8-bis(dimethylamino)-, 1,8-bis(diethylamino)-, 1,8-bis(dipropylamino)-4,5-dinitronaphthalenes and 4,5-bis(dimethylamino)naphthalene-1,8-dicarbaldehyde have been performed at low and ambient temperatures. The most interesting and unexpected result is that the formyl groups in the peri -dialdehyde display stronger ,-acceptor effects than the nitro groups. This phenomenon is ascribed to smaller steric demands of the CHO groups, their lower electrostatic repulsion, and specific packing forces. The naphthalene cores of all but one of the molecules are markedly twisted (21,26°) while that of the diethylamino derivative is not (<5°), providing different and somewhat unpredictable ways of resonance stabilization and steric relaxation. The through-conjugation in the above compounds is also discussed for gas and solution phases on the basis of theoretical calculations, UV/Vis and 1H NMR spectra.(© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2009) [source]


    Non-Covalent Interactions of Organic Halogen Compounds with Aromatic Systems , Analyses of Crystal Structure Data

    EUROPEAN JOURNAL OF ORGANIC CHEMISTRY, Issue 6 2005
    Dariusz Swierczynski
    Abstract The Cambridge Structural Database showed in mid 2002 about 20.000 structures containing halogen atoms and aryl rests with distances d between the aryl center and the halogen atom, which would allow both hydrogen bonds with the aromatic hydrogens and/or van der Waalsinteractions with the ,-cloud. The latter are characterized by short distances d and by small angles , between the vector along the aryl centroid,halogen line and the perpendicular vector originating in the aryl center (the plane normal). The cases with d < 3.0 Å for F; and d < 3.5 Å for Cl, Br or I (outliers neglected), and , , 10 ± 5°, indicating predominating van der Waals forces, amount to several hundreds. The majority of fragments exhibit larger d and , values, in line with avoidance of electrostatic repulsion between the negative partial charges of the halogens and the ,-cloud center, and with an increasing electrostatic attraction with the aromatic hydrogen atoms. The corresponding hydrogen bonds are characterized by longer distances d and by angle values of , > 60° (about 40 % of the fragments), with only very few cases close to linear hydrogen bonds (then with , = 90°). Compounds containing metal,halogen bonds were omitted in view of possible strong orientational interferences. The structures were screened with four different halogen binding modes, all of them containing the halogen attached to a carbon atom, but with different hybrizations at the connecting carbon centers. The results show only small differences in the distance distributions, with a slight preference for smaller , values for sp2 frameworks. (© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2005) [source]


    KIN-BASED RECOGNITION AND SOCIAL AGGREGATION IN A CILIATE

    EVOLUTION, Issue 5 2010
    Alexis S. Chaine
    Aggregative groups entail costs that must be overcome for the evolution of complex social interactions. Understanding the mechanisms that allow aggregations to form and restrict costs of cheating can provide a resolution to the instability of social evolution. Aggregation in Tetrahymena thermophila is associated with costs of reduced growth and benefits of improved survival through "growth factor" exchange. We investigated what mechanisms contribute to stable cooperative aggregation in the face of potential exploitation by less-cooperative lines using experimental microcosms. We found that kin recognition modulates aggregative behavior to exclude cheaters from social interactions. Long-distance kin recognition across patches modulates social structure by allowing recruitment of kin in aggregative lines and repulsion in asocial lines. Although previous studies have shown a clear benefit to social aggregation at low population densities, we found that social aggregation has very different effects at higher densities. Lower growth rates are a cost of aggregation, but also present potential benefits when restricted to kin aggregations: slow growth and crowd tolerance allow aggregations to form and permit longer persistence on ephemeral resources. Thus in highly dynamic metapopulations, kin recognition plays an important role in the formation and stability of social groups that increase persistence through cooperative consumptive restraint. [source]


    Exploring the GluR2 ligand-binding core in complex with the bicyclical AMPA analogue (S)-4-AHCP

    FEBS JOURNAL, Issue 7 2005
    Bettina B. Nielsen
    The X-ray structure of the ionotropic GluR2 ligand-binding core (GluR2-S1S2J) in complex with the bicyclical AMPA analogue (S)-2-amino-3-(3-hydroxy-7,8-dihydro-6H -cyclohepta[d]-4-isoxazolyl)propionic acid [(S)-4-AHCP] has been determined, as well as the binding pharmacology of this construct and of the full-length GluR2 receptor. (S)-4-AHCP binds with a glutamate-like binding mode and the ligand adopts two different conformations. The Ki of (S)-4-AHCP at GluR2-S1S2J was determined to be 185 ± 29 nm and at full-length GluR2(R)o it was 175 ± 8 nm. (S)-4-AHCP appears to elicit partial agonism at GluR2 by inducing an intermediate degree of domain closure (17°). Also, functionally (S)-4-AHCP has an efficacy of 0.38 at GluR2(Q)i, relative to (S)-glutamate. The proximity of bound (S)-4-AHCP to domain D2 prevents full D1,D2 domain closure, which is limited by steric repulsion, especially between Leu704 and the ligand. [source]


    The role of residues R97 and Y331 in modulating the pH optimum of an insect ,-glycosidase of family 1

    FEBS JOURNAL, Issue 24 2003
    Sandro R. Marana
    The activity of the digestive ,-glycosidase from Spodoptera frugiperda (Sf,gly50, pH optimum 6.2) depends on E399 (pKa = 4.9; catalytic nucleophile) and E187 (pKa = 7.5; catalytic proton donor). Homology modelling of the Sf,gly50 active site confirms that R97 and Y331 form hydrogen bonds with E399. Site-directed mutagenesis showed that the substitution of R97 by methionine or lysine increased the E399 pKa by 0.6 or 0.8 units, respectively, shifting the pH optima of these mutants to 6.5. The substitution of Y331 by phenylalanine increased the pKa of E399 and E187 by 0.7 and 1.6 units, respectively, and displaced the pH optimum to 7.0. From the observed ,pKa it was calculated that R97 and Y331 contribute 3.4 and 4.0 kJ·mol,1, respectively, to stabilization of the charged E399, thus enabling it to be the catalytic nucleophile. The substitution of E187 by D decreased the pKa of residue 187 by 0.5 units and shifted the pH optimum to 5.8, suggesting that an electrostatic repulsion between the deprotonated E399 and E187 may increase the pKa of E187, which then becomes the catalytic proton donor. In short the data showed that a network of noncovalent interactions among R97, Y331, E399 and E187 controls the Sf,gly50 pH optimum. As those residues are conserved among the family 1 ,-glycosidases, it is proposed here that similar interactions modulate the pH optimum of all family 1 ,-glycosidases. [source]


    Role of electrostatics in the interaction between plastocyanin and photosystem I of the cyanobacterium Phormidium laminosum

    FEBS JOURNAL, Issue 23 2002
    Beatrix G. Schlarb-Ridley
    The interactions between photosystem I and five charge mutants of plastocyanin from the cyanobacterium Phormidium laminosum were investigated in vitro. The dependence of the overall rate constant of reaction, k2, on ionic strength was investigated using laser flash photolysis. The rate constant of the wild-type reaction increased with ionic strength, indicating repulsion between the reaction partners. Removing a negative charge on plastocyanin (D44A) accelerated the reaction and made it independent of ionic strength; removing a positive charge adjacent to D44 (K53A) had little effect. Neutralizing and inverting the charge on R93 slowed the reaction down and increased the repulsion. Specific effects of MgCl2 were observed for mutants K53A, R93Q and R93E. Thermodynamic analysis of the transition state revealed positive activation entropies, suggesting partial desolvation of the interface in the transition state. In comparison with plants, plastocyanin and photosystem I of Phormidium laminosum react slowly at low ionic strength, whereas the two systems have similar rates in the range of physiological salt concentrations. We conclude that in P. laminosum, in contrast with plants in vitro, hydrophobic interactions are more important than electrostatics for the reactions of plastocyanin, both with photosystem I (this paper) and with cytochrome f[Schlarb-Ridley, B.G., Bendall, D.S. & Howe, C.J. (2002) Biochemistry41, 3279,3285]. We discuss the implications of this conclusion for the divergent evolution of cyanobacterial and plant plastocyanins. [source]


    B,Z DNA Transition Triggered by a Cationic Comb-Type Copolymer

    ADVANCED FUNCTIONAL MATERIALS, Issue 22 2009
    Naohiko Shimada
    Abstract The conformational transition from right-handed B,DNA to left-handed Z,DNA,the B,Z transition,has received increased attention recently because of its potential roles in biological systems and its applicability to bionanotechnology. Though the B,Z transition of poly(dG,dC),·,poly(dG,dC) is inducible under high salt concentration conditions (over 4,M NaCl) or by addition of multivalent cations, such as hexaamminecobalt(III), no cationic polymer were known to induce the transition. In this study, it is shown by circular dichroism and UV spectroscopy that the cationic comb-type copolymer, poly(L -lysine)- graft -dextran, but not poly(L -lysine) homopolymer or a basic peptide, induces the B,Z transition of poly(dG,dC),·,poly(dG,dC). At a cationic amino group concentration of 10,4,M the copolymer stabilizes Z,DNA. The transition pathway from the B to the Z form is different to that observed previously. We speculate that the cationic backbone of the copolymer, which reduces electrostatic repulsion among DNA phosphate groups, and the hydrophilic dextran chains, which reduce activity of water, cooperate to induce the B,Z transition. The copolymer specifically modified the micro-environment around DNA molecules to induce Z,DNA formation through stable and spontaneous inter-polyelectrolyte complex formation. [source]


    The Influence of Alkyl-Chain Length on Beta-Phase Formation in Polyfluorenes

    ADVANCED FUNCTIONAL MATERIALS, Issue 1 2009
    Daniel W. Bright
    Abstract Di- n -alkyl substituted polyfluorenes with alkyl chain lengths of 6, 7, 8, 9, and 10 carbon atoms (PF6, PF7, PF8, PF9, and PF10) are studied in dilute solution in MCH using optical spectroscopy. Beta-phase is formed upon cooling in solutions (, 7,µg mL,1) of PF7, PF8, and PF9 only, which is observed as an equilibrium absorption peak at , 437,nm and strong changes in the emission spectra. Beta-phase is formed upon thermal cycling to low temperature in solutions (,7,µg mL,1) of PF7, PF8, and PF9, which is observed as an equilibrium absorption peak at , 437,nm and strong changes in the emission spectra. Beta phase is found to occur more favorably in PF8 than in PF7 or PF9, which is attributed to a balance between two factors. The first is the dimer/aggregate formation efficiency, which is poorer for longer (more disordered) alkyl chain lengths, and the second is the Van der Waals bond energy available to overcome the steric repulsion and planarize the conjugated backbone, which is insufficient in the PF6 with a shorter alkyl chain. Beta phase formation is shown to be a result of aggregation, not a precursor to it. A tentative value of the energy required to planarize the fluorene backbone of (15.6,±,2.5) kJ mol,1 monomer is suggested. Excitation spectra of PF6, PF7, PF8, and PF9 in extremely dilute (, 10,ng mL,1) solution show that beta phase can form reversibly in dilute solutions of PF7, PF8 and PF9, which is believed to be a result of chain collapse or well dispersed aggregates being present in solution from dilution of more concentrated solutions. PF7, PF8, and PF9 also form beta phase in thermally cycled solid films spin-cast from MCH. However, in the films the PF7 formed a larger fraction of beta phase than the PF9, in contrast to the case in solutions, because it is less likely that the close-packed chains in the solid state will allow the formation of planarized chains with the longer PF9 side chains. [source]


    The Nonchiral Bislactim Diethoxy Ether as a Highly Stereo-Inducing Synthon for Sterically Hindered, , -Branched , -Amino Acids: A Practical, Large-Scale Route to an Intermediate of the Novel Renin Inhibitor Aliskiren

    HELVETICA CHIMICA ACTA, Issue 8 2003
    Richard Göschke
    The diastereoselective synthesis of the sterically hindered, , -branched , -amino acid derivative (2S,4S)- 24a and its N -[(tert -butoxy)carbonyl](Boc)-protected alcohol (2S,4S)- 19, both key intermediates of a novel class of nonpeptide renin inhibitors such as aliskiren (1), is described. Initially, the analogous methyl ester (2S,4S)- 17 was obtained by alkylation of the chiral Schöllkopf dihydropyrazine (R)- 12a with the dialkoxy-substituted alkyl bromide (R)- 11a, which proceeded with explicitly high diastereofacial selectivity (ds ,98%) to give (2S,5R,2,S)- 13a (Scheme,4), followed by mild acid hydrolysis and N -Boc protection (Scheme,5). Conversely, the complete lack of stereocontrol and poor yields for the reaction of (R)- 11a with the enantiomeric (S)- 12b suggested, in addition to the anticipated shielding effect by the iPr group at C(2) of the auxiliary, steric repulsion between the MeOC(6) and the bulky residues of (R)- 11a in the proposed transition state, which would strongly disfavor both the Si and Re attack of the electrophile (see Fig.). Based on this rationale, alkylation of the readily accessible achiral diethoxy-dihydropyrazine 21 with (R)- 11a was found to provide a 95,:,5 mixture of diastereoisomers (2S,2,S)- 22a and (2R,2,S)- 23a in high yield (Scheme,6), which afforded in two steps and after recrystallization enantiomerically pure (2S,4S)- 24a. Similarly, the stereochemical course for the alkylation reactions of the related alkyl bromides (S)- 28a and (R)- 28b with both (R)- 12a and (S)- 12b as well as with the achiral 21 was investigated (Schemes,7,9). The precursor bromides (R)- 11a, (S)- 11b, (R)- 28a, and (S)- 28b were efficiently synthesized via the diastereoselective alkylation of the Evans 3-isovaleroyloxazolidin-2-ones (R)- 7a and (S)- 7b either with bromide 6 or with benzyl chloromethyl ether, and subsequent standard transformations (Schemes,3 and 7). A practical and economical protocol of the preparation of (2S,4S)- 24a on a multi-100-g scale is given. This is the first report of the application of an achiral dihydropyrazine, i.e., in form of 21, as a highly stereo-inducing synthon providing rapid access to a N -protected , -branched , -amino acid with (2S) absolute configuration. [source]


    Orientation of endohedral H2, CO, and LiH inside heptagon-containing C58 and C58H18

    INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, Issue 5 2010
    Lili Sun
    Abstract Three H2@C58Hx, six CO@C58Hx, and six LiH@C58Hx (x = 0 and 18) complexes were optimized using B3LYP/6-31G* method. The results show that both C58 and C58H18 destabilize nonpolar H2 and weakly polar CO, and stabilize strongly polar LiH inside their cages. Three H2@C58Hx (x = 0 and 18) complexes are nearly equivalent in energy, and CO orients the longest direction of cage because of spatial repulsion between them in the most stable CO@C58Hx (x = 0 and 18) isomers. Orientation of LiH inside C58Hx (x = 0 and 18) cages is determined by dipole-induced dipole attractive interaction between them, and this attraction is especially significant in LiH@C58H18 complexes. © 2009 Wiley Periodicals, Inc. Int J Quantum Chem, 2010 [source]


    A computational study of the carboxylic acid of phloroglucinol in vacuo and in water solution

    INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, Issue 3 2010
    Liliana Mammino
    Abstract 2,4,6-Trihydroxybenzoic acid (FA) is the carboxylic acid of phloroglucinol and, in turn, the parent compound of many biologically active compounds. The biological activities of FA are "extreme" among trihydroxybenzoic acids (e.g., lowest antioxidant activity, highest toxicity toward crustaceans). A complete MP2/6-31++G(d,p) conformational study in vacuo shows that the lowest energy conformers contain two intramolecular hydrogen bonds between the COOH function and the two ortho phenolic OH, with the Z form of COOH preferred over the E form. Comparisons with conformers in which the H-bonds are removed enable fairly reliable evaluations of their energy, because of an off-plane shift of COOH on H-bond removal, decreasing the effects of lone pair repulsion. Comparisons with the other hydroxybenzoic acids (extensively calculated in vacuo at the same level of theory) suggest that FA has the strongest intramolecular H-bonds. PCM calculations of FA in water solution show the same sequence of relative stabilities as in vacuo, with narrower differences because of the greater solvent stabilization of higher energy conformers. Calculations of adducts with water molecules H-bonded to different donor,acceptor centers of FA show the preferred arrangements of water molecules around the different regions of FA and confirm that the stronger intramolecular H-bonds are not broken on competition with the possibility of formation of intermolecular H-bonds. HF/6-31++G(d,p) calculations of adducts, in which the FA molecule is completely surrounded by water molecules, show that 14,16 water molecules (depending on the FA conformer geometry) realize arrangements corresponding to a presumable first solvation layer, with all the water molecules directly H-bonded to donor,acceptor centers of FA or bridging water molecules directly H-bonded to them. © 2009 Wiley Periodicals, Inc. Int J Quantum Chem, 2010 [source]


    HTSC cuprate phase diagram using a modified Boson,Fermion,Gossamer model describing competing orders, a quantum critical point and possible resonance complex

    INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, Issue 15 2009
    Richard H. Squire
    Abstract There has been considerable effort expended toward understanding high temperature superconductors (HTSC), and more specifically the cuprate phase diagram as a function of doping level. Yet, the only agreement seems to be that HTSC is an example of a strongly correlated material where Coulomb repulsion plays a major role. This manuscript proposes a model based on a Feshbach resonance pairing mechanism and competing orders. An initial BCS-type superconductivity at high doping is suppressed in the two particle channel by a localized preformed pair (PP) (Nozieres and Schmitt-Rink, J Low Temp Phys, 1985, 59, 980) (circular density wave) creating a quantum critical point. As doping continues to diminish, the PP then participates in a Feshbach resonance complex that creates a new electron (hole) pair that delocalizes and constitutes HTSC and the characteristic dome (Squire and March, Int J Quantum Chem, 2007, 107, 3013; 2008, 108, 2819). The resonant nature of the new pair contributes to its short coherence length. The model we propose also suggests an explanation (and necessity) for an experimentally observed correlated lattice that could restrict energy dissipation to enable the resonant Cooper pair to move over several correlation lengths, or essentially free. The PP density wave is responsible for the pseudogap as it appears as a "localized superconductor" since its density of states and quasiparticle spectrum are similar to those of a superconductor (Peierls,Fröhlich theory), but with no phase coherence between the PP. © 2009 Wiley Periodicals, Inc. Int J Quantum Chem, 2009 [source]


    Improvements of parametric quantum methods with new elementary parametric functionals

    INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, Issue 10 2008
    Fernando Ruette
    Abstract A series of elementary parametric functionals (EPFs) for resonance integral, electron-electron repulsion, electron-nucleus attraction, core-core interaction, and bond correlation correction were included in the new version of CATIVIC method [Int J Quantum Chem 2004, 96, 321]. In the present work, a systematic way to improve the precision of parametric quantum methods (PQMs) by using several EPFs in the parameterization of a set of molecules is proposed. Based on the fact that a linear combination of elementary functionals from the exact Hamiltonian is also a functional, a linear combination of EPFs has been proved that can enhance the accuracy of PQMs by considering the convex condition. A general formulation of simulation techniques for molecular properties is presented and a formal extension of the minimax principle to PQMs is also considered. © 2008 Wiley Periodicals, Inc. Int J Quantum Chem, 2008 [source]


    Time-dependent density functional calculations of the Q-like bands of phenylene-linked free-base and zinc porphyrin dimers

    INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, Issue 3 2001
    Yoichi Yamaguchi
    Abstract Time-dependent density functional theory (TDDFT) calculations have been performed on the excitation energies and oscillator strengths of the Q-like bands of three structural isomers of phenylene-linked free-base (FBP) and zinc (ZnP) porphyrin dimers. The TDDFT calculated results on the low-lying excited states of the reference monomers, FBP and ZnP, are in excellent agreement with previously calculated and experimental results. It is found that the 1,3- and 1,4-phenylene-linked dimers have monomerlike Q bands that are slightly red-shifted compared to the monomers and new Q, bands comprised of the cross-linked excitations from the FBP (ZnP) ring to the ZnP (FBP) ring at considerably lower energies than the monomer Q bands. For the 1,2-phenylene-linked dimer, the direct ,,, interaction between porphyrin rings caused by the van der Waals repulsion between them provides strong mixing of the Q, bands with the Q bands, which causes its minimum excitation energy to be red-shifted by 0.05 eV compared to the other isomers. The oscillator strengths of the Q, bands are also unexpectedly found to be as strong as those of the Q bands in the dimers. © 2001 John Wiley & Sons, Inc. Int J Quantum Chem 84: 338,347, 2001 [source]


    A family of thioxanthato ruthenium and osmium aryls

    ISRAEL JOURNAL OF CHEMISTRY, Issue 3 2001
    Swarup Chattopadhyay
    The title complexes of type M(RL2)(PPh3)2(CO)(S2CSEt) (2a: M = Ru; 2b: M = Os) have been synthesized in excellent yields by reacting M(RL1)(PPh3)2(CO)X (1a: M = Ru, × = Cl; 1b: M = Os, × = Br) with potassium ethyl thioxanthate and have been characterized with the help of spectral and electrochemical data. The RL2 ligand in 2 is the imine-phenol tautomer of N-C6H4R(p)-4-methylsalicylaldimine (R = Me, MeO, Cl) coordinated at the carbanionic-C2 atom only while RL1 in 1 is the iminium-phenolato tautomer chelated via carbanionic-C2 and phenolato-O atoms. The synthetic reaction is thus attended with tautomerization of the Schiff base ligand. It is also associated with a rotation of the ligand by ,180° around the M,C bond in order to exclude steric repulsion. These features have been revealed by structure determination of 2a (R = Me). The metallated aldimine ring is found to be highly noncoplanar (dihedral angle ,40°) with the thioxanthate chelate ring due to steric repulsion originating from the relatively large size of the sulfur atom. This phenomenon, which is absent in both the precursor 1 (R = Me) and in the carboxylate analogue Ru(MeL2)(PPh3)2(CO)(O2CMe), 7, has distinctive effects on bond parameters of 2a (R = Me). Thus the two Ru,P bonds in 2a (R = Me) differ in length by as much as 0.06 Å. The thioxanthate 2 is thermodynamically more stable than the precursor 1 as well as the carboxylate 7. Accordingly, both of these are irreversibly transformed to 2a (R = Me) upon treatment with thioxanthate. [source]


    Putative dual role of ephrin-Eph receptor interactions in inflammation

    IUBMB LIFE, Issue 7 2006
    Andrei I. Ivanov
    Abstract Inflammation is associated with a decreased adhesion between endothelial cells in blood vessels and an increased adhesion of circulating leukocytes to vascular endothelium and to epithelia of internal organs. These changes lead to leukocyte extravasation and tissue transmigration. We propose that ephrins and Eph receptors play important, but underappreciated, signaling roles in these processes. At early stages of inflammation, EphA2 receptor and ephrin-B2 are overexpressed in endothelial and epithelial cells, thus leading to those events (expression of adhesion molecules on the cell surface and reorganization of the intracellular cytoskeleton) that cause cell repulsion and disruption of endothelial and epithelial barriers. At later stages of inflammation, expression of EphA1, EphA3, EphB3, and EphB4 on leukocytes and endothelial cells decreases, thus promoting adhesion of leukocytes to endothelial cells. Taking into consideration the abundance of ephrins and Eph receptors in tissues and the robustness of their signaling effects, the proposed involvement is likely to be substantial and may constitute a novel therapeutic target. iubmb Life, 58: 389-394, 2006 [source]


    The two-Yukawa model and its applications: the cases of charged proteins and copolymer micellar solutions

    JOURNAL OF APPLIED CRYSTALLOGRAPHY, Issue 2007
    Sow-Hsin Chen
    Charged and uncharged colloidal systems are known from experiment to display an extremely rich phase behavior, which is ultimately determined by the effective pair potential between particles in solution. As a confirmation, the recent striking observation of an equilibrium cluster phase in charged globular protein solutions [Stradner, Sedgwick, Cardinaux, Poon, Egelhaaf & Schurtenberger (2004). Nature, 432, 492,495] has been interpreted as the effect of competing short-range attractive and long-range repulsive interactions. The `two-Yukawa (2Y) fluid' model assumes an interparticle potential consisting of a hard core plus an attractive and a repulsive Yukawa tail. We show that this rather simple model can indeed explain satisfactorily the structural properties of diverse colloidal materials, measured in small-angle neutron scattering (SANS) experiments, including the cases of equilibrium cluster formation and soft-core repulsion. We apply this model to the analysis of SANS data from horse-heart cytochrome c protein solutions (whose effective potential can be modeled as a hard-sphere part plus a short-range attraction and a weaker screened electrostatic repulsion) and micellar solutions of a triblock copolymer (whose effective potential can be modeled as a hard-sphere part plus a repulsive shoulder and a short-range attraction). The accuracy of the 2Y model predictions is successfully tested against Monte Carlo simulations in both cases. [source]


    Release behavior of freeze-dried alginate beads containing poly(N -isopropylacrylamide) copolymers

    JOURNAL OF APPLIED POLYMER SCIENCE, Issue 1 2008
    Jae-Hyung Choi
    Abstract Beads composed of alginate, poly(N -isopropylacrylamide) (PNIPAM), the copolymers of N -isopropylacrylamide and methacrylic acid (P(NIPAM- co -MAA)), and the copolymers of N -isopropylacrylamide, methacrylic acid, and octadecyl acrylate (P(NIPAM- co -MAA- co -ODA)), were prepared by dropping the polymer solutions into CaCl2 solution. The beads were freeze-dried and the release of blue dextran entrapped in the beads was observed in distilled water with time and pH. The degree of release was in the order of alginate bead < alginate/PNIPAM bead , alginate/P(NIPAM- co -MAA) bead < alginate/P(NIPAM- co -MAA- co -ODA) bead. On the other hand, swelling ratios reached steady state within 20 min, and the values were 200,800 depending on the bead composition. The degree of swelling showed the same order as that of release. Among the beads, only alginate/P(NIPAM- co -MAA- co -ODA) bead exhibited pH-dependent release. At acidic condition, inter- and intraelectrostatic repulsion is weak and P(NIPAM- co -MAA- co -ODA) could readily be assembled into an aggregate due to the prevailing hydrophobic interaction of ODA. Thus, it could block the pore of bead matrix, leading to a suppressed release. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008 [source]


    Performance of plane-wave-based LDA+U and GGA+U approaches to describe magnetic coupling in molecular systems,

    JOURNAL OF COMPUTATIONAL CHEMISTRY, Issue 14 2009
    Pablo Rivero
    Abstract This work explores the performance of periodic plane wave density functional theory calculations with an on-site Coulomb correction to the standard LDA and GGA exchange-correlation potential,commonly used to describe strongly correlated solids,in describing the magnetic coupling constant of a series of molecular compounds representative of dinuclear Cu complexes and of organic diradicals. The resulting LDA+U or GGA+U formalisms, lead to results comparable to experiment and to those obtained by means of standard hybrid functionals provided that the value of the U parameter is adequately chosen. Hence, these methods offer an alternative efficient computational scheme to correct LDA and GGA approaches to adequately describe the electronic structure and magnetic coupling in large molecular magnetic systems, although at the expenses of introducing an empirical (U) parameter. For all investigated copper dinuclear systems, the LDA+U and GGA+U approaches lead to an improvement in the description of magnetic properties over the original LDA and GGA schemes with an accuracy similar to that arising from the hybrid B3LYP functional, by increasing the on-site Coulomb repulsion with a moderate U value. Nevertheless, the introduction of an arbitrary U value in the 0,10 eV range most often provides the correct ground-state spin distribution and the correct sign of the magnetic coupling constant. © 2009 Wiley Periodicals, Inc. J Comput Chem, 2009 [source]


    Electron correlation: The many-body problem at the heart of chemistry

    JOURNAL OF COMPUTATIONAL CHEMISTRY, Issue 8 2007
    David P. Tew
    Abstract The physical interactions among electrons and nuclei, responsible for the chemistry of atoms and molecules, is well described by quantum mechanics and chemistry is therefore fully described by the solutions of the Schrödinger equation. In all but the simplest systems we must be content with approximate solutions, the principal difficulty being the treatment of the correlation between the motions of the many electrons, arising from their mutual repulsion. This article aims to provide a clear understanding of the physical concept of electron correlation and the modern methods used for its approximation. Using helium as a simple case study and beginning with an uncorrelated orbital picture of electronic motion, we first introduce Fermi correlation, arising from the symmetry requirements of the exact wave function, and then consider the Coulomb correlation arising from the mutual Coulomb repulsion between the electrons. Finally, we briefly discuss the general treatment of electron correlation in modern electronic-structure theory, focussing on the Hartree-Fock and coupled-cluster methods and addressing static and dynamical Coulomb correlation. © 2007 Wiley Periodicals, Inc. J Comput Chem 28: 1307,1320, 2007 [source]


    Royal crown-shaped electride Li3 -N3 -Be containing two superatoms: New knowledge on aromaticity

    JOURNAL OF COMPUTATIONAL CHEMISTRY, Issue 8 2006
    Zhi-Ru Li
    Abstract The structure and aromaticity of a royal crown-shaped molecule Li3 -N3 -Be are studied at the CCSD(T)/aug-cc-pVDZ level. This molecule is a charge-separated system and can be denoted as Li32+N33,Be+. It is found that the Li32+ ring exhibits aromaticity mainly because the Li32+ ring can share the ,-electron with the N3,3 ring. The 4n+2 electron counter rule can be satisfied for the Li32+ subunit if the shared , valence electron of N33, subunit is also taken into account. This new knowledge on aromaticity of a ring from the interactions between subunits is revealed first time in this paper. Li3 -N3 -Be can be also regarded as a molecule containing two superatoms (Li3 and N3), which may be named as a "superomolecule." Li3 -N3 -Be is a new metal,nonmetal,metal type sandwich complex. The N33, trianion in the middle repulses the electron clouds of the two metal subunits (mainly to the Li3 superatom) to generate an excess electron, and thus Li3 -N3 -Be is also an electride. This phenomenon of the repulsion results in: (a) the HOMO energy level increased, (b) the electron cloud in HOMO distended, (c) the area of the negative NICS value extended, and (d) the VIE value lowered. So the superomolecule Li3 -N3 -Be is not only a new metal,nonmetal,metal type sandwich complex but also a new type electride, which comes from the interaction between the alkali superatom (Li3) and the nonmetal superatom (N3). © 2006 Wiley Periodicals, Inc. J Comput Chem 27: 986,993, 2006 [source]