Reef Ecosystems (reef + ecosystem)

Distribution by Scientific Domains

Kinds of Reef Ecosystems

  • coral reef ecosystem


  • Selected Abstracts


    Documenting Loss of Large Trophy Fish from the Florida Keys with Historical Photographs

    CONSERVATION BIOLOGY, Issue 3 2009
    LOREN McCLENACHAN
    arrecifes de coral; ecología histórica; directrices cambiantes; peces de arrecife; sobrepesca Abstract:,A loss of large vertebrates has occurred in aquatic and terrestrial ecosystems, but data to measure long-term population changes are sparse. Historical photographs provide visual and quantitative evidence of changes in mean individual size and species composition for groups of marine fish that have been targeted by sport fishing. I measured such trends for 13 groups of recreationally caught "trophy" reef fish with photographs taken in Key West, Florida, from 1956 to 2007. The mean fish size declined from an estimated 19.9 kg (SE 1.5) to 2.3 kg (SE 0.3), and there was a major shift in species composition. Landings from 1956 to 1960 were dominated by large groupers (Epinephelus spp.), and other large predatory fish were commonly caught, including sharks with an average length of just <2 m. In contrast, landings in 2007 were composed of small snappers (Lutjanus spp. and Ocyurus chrysurus) with an average length of 34.4 cm (SE 0.62), and the average length of sharks declined by more than 50% over 50 years. Major declines in the size of fish caught were not reflected in the price of fishing trips, so customers paid the same amount for a less-valuable product. Historical photographs provide a window into a more pristine coral reef ecosystem that existed a half a century ago and lend support to current observations that unfished reef communities are able to support large numbers of large-bodied fish. Resumen:,Una pérdida de vertebrados mayores ha ocurrido en ecosistemas acuáticos y terrestres, pero los datos para medir los cambios poblaciones a largo plazo son escasos. Las fotografías históricas proporcionan evidencia visual y cuantitativa de cambios en el tamaño individual promedio y de la composición de especies en grupos de peces marinos que han sido blanco de la pesca deportiva. Medí esas tendencias en 13 grupos de peces de arrecife capturados recreativamente como "trofeos" mediante fotografías tomadas en Key West, Florida, desde 1956 a 2007. El peso promedio de los peces declinó de unos 19.9 kg (ES 1.5) a 2.3 kg (ES 0.3), y hubo un cambio mayor en la composición de especies. Las capturas entre 1956 y 1960 estuvieron dominadas por meros (Epinephelus spp.) grandes, y otros peces depredadores eran capturados comúnmente, incluyendo tiburones con una longitud promedio de poco menos de 2m. En contraste, las capturas en 2007 fueron compuestas de pargos (Lutjanus spp. y Ocyurus chrysurus) pequeños con una longitud promedio de 34.4 cm (ES 0.62), y la longitud promedio de los tiburones declinó más de 50% en 50 años. La gran declinación en el tamaño de los peces capturados no se reflejó en los precios de los viajes de pesca, así que los clientes pagaron la misma cantidad por un producto menos valioso. Las fotografías históricas proporcionan una visión de un ecosistema arrecifal coralino prístino que existió hace medio siglo y proporcionan soporte a los comentarios actuales de que las comunidades arrecifales no explotadas son capaces de soportar numerosos peces de talla grande. [source]


    Migration of hawksbill turtles Eretmochelys imbricata from Tortuguero, Costa Rica

    ECOGRAPHY, Issue 3 2005
    Sebastian Troëng
    The hawksbill turtle Eretmochelys imbricata is a widely distributed and critically endangered species that feeds on sponges and fills an important ecological role in the coral reef ecosystem. At Tortuguero, Costa Rica, trend analyses indicate considerable decline in nesting estimated at 77.2,94.5% between 1956 and 2003, as a result of excessive turtle fishing. We analyzed flipper tag returns, satellite telemetry and genetic samples to determine movements and habitat use of adult female Tortuguero hawksbills. Tag returns and satellite telemetry show hawksbills migrate to foraging grounds in Nicaragua and Honduras. Genetic analysis indicates the hawksbills may also migrate to Cuban, Puerto Rican, and possibly Mexican waters. We conclude hawksbills represent an internationally shared resource. There is a close correlation between tag recapture sites, hawksbill foraging grounds and coral reef distribution. Caribbean coral reef decline may reduce food availability and negatively impact hawksbill turtles. Conversely, hawksbill decline may shift the balance on coral reefs by reducing predation pressure on sponges and hence make coral reefs less resilient to natural and anthropogenic threats. Strategies aiming to conserve hawksbills and coral reefs must consider both the extensive hawksbill migrations and the close relationship between the species and the coral reef ecosystem. [source]


    Lessons from the past: the collapse of Jamaican coral reefs

    FISH AND FISHERIES, Issue 2 2009
    Marah J. Hardt
    Abstract Since Pre-Columbian times, humans have exploited Jamaican marine ecosystems with significant consequences for flora and fauna. This study focuses on the history of reef fish exploitation in Jamaica, from first human occupation to the present day, to determine how past fishing activities contributed to subsequent declines in the coral reef ecosystem. The pattern of declining reef fish populations was nonlinear. Reef fish first declined in prehistoric times but then potentially recovered, following genocide of the native human population. Reduced fishing pressure lasted until the mid-19th century. At that time, depletion of reef fish populations again occurred with a precipitous decline from the 1850s to the 1940s. The final shift from relatively abundant to overfished marine fauna corresponded to subtle changes in fish trap design as well as development of recreational fishing. Government subsidies throughout the second half of the 20th century exacerbated the declines. This analysis shows that local artisanal fisheries with relatively low levels of effort and seemingly subtle shifts in technology can significantly impact the coral reef ecosystem and that declines occurred decades to centuries before modern ecological studies began. This research shows how historical analysis can be a powerful tool to minimize shifted baselines and establish realistic targets for recovery and sustainable management of marine ecosystems. [source]


    Older species: a rejuvenation on coral reefs?

    JOURNAL OF BIOGEOGRAPHY, Issue 4 2004
    John C. Briggs
    Abstract Aim To discuss the theory that the present high species diversity and apomorphic character of the coral reef ecosystem is because of the historic accumulation of basal species from marginal habitats. Location The Indo-West Pacific Ocean. Methods The examination of biogeographical patterns from the standpoint of paleontology, phylogeny, genetics, and empirical data. Results Fossil patterns from several clades indicate a gradient of increasing average generic age that extends outward from the high diversity reefs. Successful species that give rise to new species, genera, and families apparently originate from high diversity locations. The tropics have been a major source of evolutionary novelty, not simply a refuge that has accumulated diversity. Many plesiomorphic clades, that once dominated the shallow tropics, are now limited to the deep sea and other safe places. Recent research on several tropical fish families indicates that more apomorphic species inhabit the high diversity reefs. Genetic studies suggest that a decrease in genetic variation extends from the diversity centre toward the outer reaches of the Indo-West Pacific. Empirical data show that it is extremely difficult for species from low diversity areas to invade places of higher diversity. Main conclusions There is no convincing evidence to indicate that basal species from marginal habitats have been able to accumulate on the coral reefs. Once such species have been displaced from a high diversity environment, there is apparently no return. The evolutionary innovations that contribute to the origination of new phyletic lines take place under conditions of high diversity and maximum competition. [source]


    Combined effects of two stressors on Kenyan coral reefs are additive or antagonistic, not synergistic

    CONSERVATION LETTERS, Issue 2 2010
    Emily S. Darling
    Abstract A challenge for conservation science is predicting the impacts of co-occurring human activities on ecological systems. Multiple anthropogenic and natural stressors impact ecosystems globally and are expected to jeopardize their ecological functions and the success of conservation and management initiatives. The possibility that two or more stressors interact synergistically is of particular concern, but such nonadditive effects remain largely unidentified in nature. A long-term data set of hard coral cover from Kenyan reefs was used to examine the independent and interactive effects of two stressors: fishing and a temperature anomaly in 1998 that caused mass coral bleaching and mortality. While both stressors decreased coral cover, fishing by 51% and bleaching by 74%, they did not interact synergistically. Instead, their combined effect was antagonistic or weakly additive. The observed nonsynergistic response may be caused by the presence of one dominant stressor, bleaching, and cotolerance of coral taxa to both bleaching and fishing stressors. Consequently, coral bleaching has been the dominant driver of coral loss on Kenyan reefs and while marine reserves offer many benefits to reef ecosystems, they may not provide corals with a refuge from climate change. [source]


    Gradients of coastal fish farm effluents and their effect on coral reef microbes

    ENVIRONMENTAL MICROBIOLOGY, Issue 9 2008
    Melissa Garren
    Summary Coastal milkfish (Chanos chanos) farming may be a source of organic matter enrichment for coral reefs in Bolinao, Republic of the Philippines. Interactions among microbial communities associated with the water column, corals and milkfish feces can provide insight into the ecosystem's response to enrichment. Samples were collected at sites along a transect that extended from suspended milkfish pens into the coral reef. Water was characterized by steep gradients in the concentrations of dissolved organic carbon (70,160 ,M), total dissolved nitrogen (7,40 ,M), chlorophyll a (0.25,10 ,g l,1), particulate matter (106,832 ,g l,1), bacteria (5 × 105,1 × 106 cells ml,1) and viruses (1,7 × 107 ml,1) that correlated with distance from the fish cages. Particle-attached bacteria, which were observed by scanning laser confocal microscopy, increased across the gradient from < 0.1% to 5.6% of total bacteria at the fish pens. Analyses of 16S rRNA genes by denaturing gradient gel electrophoresis and environmental clone libraries revealed distinct microbial communities for each sample type. Coral libraries had the greatest number of phyla represented (range: 6,8) while fish feces contained the lowest number (3). Coral libraries also had the greatest number of ,novel' sequences (defined as < 93% similar to any sequence in the NCBI nt database; 29% compared with 3% and 5% in the feces and seawater libraries respectively). Despite the differences in microbial community composition, some 16S rRNA sequences co-occurred across sample types including Acinetobacter sp. and Ralstonia sp. Such patterns raise the question of whether bacteria might be transported from the fish pens to corals or if microenvironments at the fish pens and on the corals select for the same phylotypes. Understanding the underlying mechanisms of effluent,coral interactions will help predict the ability of coral reef ecosystems to resist and rebound from organic matter enrichment. [source]


    Trouble on the reef: the imperative for managing vulnerable and valuable fisheries

    FISH AND FISHERIES, Issue 3 2005
    Yvonne Sadovy
    Abstract Reef fishes are significant socially, nutritionally and economically, yet biologically they are vulnerable to both over-exploitation and degradation of their habitat. Their importance in the tropics for living conditions, human health, food security and economic development is enormous, with millions of people and hundreds of thousands of communities directly dependent, and many more indirectly so. Reef fish fisheries are also critical safety valves in times of economic or social hardship or disturbance, and are more efficient, less wasteful and support far more livelihoods per tonne produced than industrial scale fisheries. Yet, relative to other fisheries globally, those associated with coral reefs are under-managed, under-funded, under-monitored, and as a consequence, poorly understood or little regarded by national governments. Even among non-governmental organizations, which are increasingly active in tropical marine issues, there is typically little focus on reef-associated resources, the interest being more on biodiversity per se or protection of coral reef habitat. This essay explores the background and history to this situation, examines fishery trends over the last 30 years, and charts a possible way forward given the current realities of funding, capacity, development patterns and scientific understanding of coral reef ecosystems. The luxury live reef food-fish trade is used throughout as a case study because it exemplifies many of the problems and challenges of attaining sustainable use of coral reef-associated resources. The thesis developed is that sustaining reef fish fisheries and conserving biodiversity can be complementary, rather than contradictory, in terms of yield from reef systems. I identify changes in perspectives needed to move forward, suggest that we must be cautious of ,fashionable' solutions or apparent ,quick fixes', and argue that fundamental decisions must be made concerning the short and long-term values of coral reef-associated resources, particularly fish, for food and cash and regarding alternative sources of protein. Not to address the problems will inevitably lead to growing poverty, hardship and social unrest in many areas. [source]


    An evolutionary fast-track to biocalcification

    GEOBIOLOGY, Issue 3 2010
    D. J. JACKSON
    The ability to construct mineralized shells, spicules, spines and skeletons is thought to be a key factor that fuelled the expansion of multicellular animal life during the early Cambrian. The genes and molecular mechanisms that control the process of biomineralization in disparate phyla are gradually being revealed, and it is broadly recognized that an insoluble matrix of proteins, carbohydrates and other organic molecules are required for the initiation, regulation and inhibition of crystal growth. Here, we show that Astrosclera willeyana, a living representative of the now largely extinct stromatoporid sponges (a polyphyletic grade of poriferan bauplan), has apparently bypassed the requirement to evolve many of these mineral-regulating matrix proteins by using the degraded remains of bacteria to seed CaCO3 crystal growth. Because stromatoporid sponges formed extensive reefs during the Paelozoic and Mesozoic eras (fulfilling the role that stony corals play in modern coral reefs), and fossil evidence suggests that the same process of bacterial skeleton formation occurred in these stromatoporid ancestors, we infer that some ancient reef ecosystems might have been founded on this microbial,metazoan relationship. [source]


    Will increased storm disturbance affect the biodiversity of intertidal, nonscleractinian sessile fauna on coral reefs?

    GLOBAL CHANGE BIOLOGY, Issue 11 2008
    S. J. WALKER
    Abstract Relatively little is known about how the future effects of climatic change, including increases in sea level, temperature and storm severity and frequency, will impact on patterns of biodiversity on coral reefs, with the notable exception of recent work on corals and fish in tropical reef ecosystems. Sessile invertebrates such as ascidians, sponges and bryozoans occupying intertidal rubble habitats on coral reefs contribute significantly to the overall biodiversity and ecosystem function, but there is little or no information available on the likely impacts on these species from climate change. The existing strong physical gradients in these intertidal habitats will be exacerbated under predicted climatic change. By examining the distribution and abundance of nonscleractinian, sessile invertebrate assemblages exposed to different levels of wave action and at different heights on the shore around a coral reef, we show that coral reef intertidal biodiversity is particularly sensitive to physical disturbance. As physical disturbance regimes increase due to more intense storms and wave action associated with global warming, we can expect to see a corresponding decrease in the diversity of these cryptic sessile assemblages. This could impact negatively on the future health and productivity of coral reef ecosystems, given the ecosystem services these organisms provide. [source]


    Coral bleaching, reef fish community phase shifts and the resilience of coral reefs

    GLOBAL CHANGE BIOLOGY, Issue 9 2006
    DAVID R. BELLWOOD
    Abstract The 1998 global coral bleaching event was the largest recorded historical disturbance of coral reefs and resulted in extensive habitat loss. Annual censuses of reef fish community structure over a 12-year period spanning the bleaching event revealed a marked phase shift from a prebleach to postbleach assemblage. Surprisingly, we found that the bleaching event had no detectable effect on the abundance, diversity or species richness of a local cryptobenthic reef fish community. Furthermore, there is no evidence of regeneration even after 5,35 generations of these short-lived species. These results have significant implications for our understanding of the response of coral reef ecosystems to global warming and highlight the importance of selecting appropriate criteria for evaluating reef resilience. [source]


    Computational Biology Approaches to Plant Metabolism and Photosynthesis: Applications for Corals in Times of Climate Change and Environmental Stress

    JOURNAL OF INTEGRATIVE PLANT BIOLOGY, Issue 8 2010
    M. James C. Crabbe
    Knowledge of factors that are important in reef resilience helps us to understand how reef ecosystems react following major anthropogenic and environmental disturbances. The symbiotic relationship between the photosynthetic zooxanthellae algal cells and corals is that the zooxanthellae provide the coral with carbon, while the coral provides protection and access to enough light for the zooxanthellae to photosynthesise. This article reviews some recent advances in computational biology relevant to photosynthetic organisms, including Beyesian approaches to kinetics, computational methods for flux balances in metabolic processes, and determination of clades of zooxanthallae. Application of these systems will be important in the conservation of coral reefs in times of climate change and environmental stress. [source]


    Recognizing diversity in coral symbiotic dinoflagellate communities

    MOLECULAR ECOLOGY, Issue 6 2007
    AMY M. APPRILL
    Abstract A detailed understanding of how diversity in endosymbiotic dinoflagellate communities maps onto the physiological range of coral hosts is critical to predicting how coral reef ecosystems will respond to climate change. Species-level taxonomy of the dinoflagellate genus Symbiodinium has been predominantly examined using the internal transcribed spacer (ITS) region of the nuclear ribosomal array (rDNA ITS2) and downstream screening for dominant types using denaturing gradient gel electrophoresis (DGGE). Here, ITS2 diversity in the communities of Symbiodinium harboured by two Hawaiian coral species was explored using direct sequencing of clone libraries. We resolved sixfold to eightfold greater diversity per coral species than previously reported, the majority of which corresponds to a novel and distinct phylogenetic lineage. We evaluated how these sequences migrate in DGGE and demonstrate that this method does not effectively resolve this diversity. We conclude that the Porites spp. examined here harbour diverse assemblages of novel Symbiodinium types and that cloning and sequencing is an effective methodological approach for resolving the complexity of endosymbiotic dinoflagellate communities harboured by reef corals. [source]


    Herbivorous fishes and the potential of Caribbean marine reserves to preserve coral reef ecosystems

    AQUATIC CONSERVATION: MARINE AND FRESHWATER ECOSYSTEMS, Issue 5 2010
    Dorothée Kopp
    Abstract 1.The development of macroalgae to the detriment of corals is now one of the major threats to coral reefs. Herbivorous fishes are partly responsible for algal regulation on coral reefs and their overexploitation favours the shift from scleractinian coral-dominated systems towards macroalgae-dominated systems. 2.Marine protected areas (MPAs) that have been established worldwide may benefit coral reefs through the maintenance of high densities of herbivorous fishes which regulate algal growth. 3.The paper assesses whether small MPAs in the Caribbean are able to enhance herbivorous fish stock and by controlling macroalgae help to maintain reef ecosystems. A visual census using band-transects was undertaken around Guadeloupe island where marine reserves have been in place since 1979. The effects of MPAs on both benthic communities and herbivorous fishes are examined. 4.Inside MPAs, herbivorous fish biomass was almost twice as high as outside MPAs and macroalgal cover was significantly lower. Fish size class distributions revealed that large individuals occurred mainly inside MPAs and that few male individuals were found outside MPAs. Copyright © 2010 John Wiley & Sons, Ltd. [source]


    The use of volunteers for conducting sponge biodiversity assessments and monitoring using a morphological approach on Indo-Pacific coral reefs

    AQUATIC CONSERVATION: MARINE AND FRESHWATER ECOSYSTEMS, Issue 2 2007
    James J. Bell
    Abstract 1.Sponges are an important component of coral reef ecosystems, but even though they are widespread with the ability to significantly influence other benthic community members they rarely feature to any great extent in current monitoring or biodiversity assessment programmes conducted by volunteer and professional groups. This exclusion is usually because of the taxonomic problems associated with sponge identification. 2.A potential alternative to monitoring temporal or spatial change in sponge assemblages and assessing biodiversity levels is to characterize sponges using morphologies present rather than collecting species data. Quantifying sponge biodiversity (for monitoring and biodiversity assessments) at the morphological level is less time and resource consuming than collecting species data and more suited to groups with little training and experience of sponge taxonomy or in regions where detailed taxonomic information on sponges is sparse. 3.This paper considers whether the same differences and similarities in sponge richness and assemblage composition can be identified using species and morphological data in response to environmental gradients at two coral reef ecosystems in south-east Sulawesi, Indonesia, and whether volunteers can be used to reliably collect morphological information. Sponge morphologies were classified into 14 groups and different morphological assemblages were found by the author at the two sites and between depth intervals. Comparisons of sponge species and morphological composition data showed that common patterns in assemblage structuring and richness could be identified irrespective of whether morphological or species data were used. In addition, a positive linear relationship was found between sponge species and morphological richness. 4.The morphological data recorded by volunteer divers (n=10) were compared with that collected by the author. Although volunteers recorded fewer sponges than the author (approximately 15% less), missing mainly small encrusting specimens, similar assemblage structure could be identified from both the volunteers' and the author's data. 5.The results showed that the same differences in sponge assemblages between sites and depths could be identified from both species and morphological data. In addition, these morphological data could be reliably collected by volunteer divers. Copyright © 2006 John Wiley & Sons, Ltd. [source]