Home About us Contact | |||
REE
Terms modified by REE Selected AbstractsLow-fat oxidation may be a factor in obesity among men with schizophreniaACTA PSYCHIATRICA SCANDINAVICA, Issue 6 2009J.-K. Sharpe Objective:, Obesity associated with atypical antipsychotic medications is an important clinical issue for people with schizophrenia. The purpose of this project was to determine whether there were any differences in resting energy expenditure (REE) and respiratory quotient (RQ) between men with schizophrenia and controls. Method:, Thirty-one men with schizophrenia were individually matched for age and relative body weight with healthy, sedentary controls. Deuterium dilution was used to determine total body water and subsequently fat-free mass (FFM). Indirect calorimetry using a Deltatrac metabolic cart was used to determine REE and RQ. Results:, When corrected for FFM, there was no significant difference in REE between the groups. However, fasting RQ was significantly higher in the men with schizophrenia than the controls. Conclusion:, Men with schizophrenia oxidised proportionally less fat and more carbohydrate under resting conditions than healthy controls. These differences in substrate utilisation at rest may be an important consideration in obesity in this clinical group. [source] The genesis of the carbonatized and silicified ultramafics known as listvenites: a case study from the Mihal,çç,k region (Eski,ehir), NW TurkeyGEOLOGICAL JOURNAL, Issue 5 2006Mehmet Akbulut Abstract The Mihal,çç,k region (Eski,ehir) in NW Turkey includes an ophiolitic assemblage with a serpentinite-matrix mélange. The serpentinites of this mélange host silica-carbonate metasomatites which were previously named as listvenites. Our mineralogical and geochemical studies revealed that these alteration assemblages represent members of the listvenitic series, mainly the carbonate rocks, silica-carbonate rocks and birbirites, rather than true listvenites (sensu stricto). Tectonic activity and lithology are principal factors that control the formation of these assemblages. Carbonatization and silicification of the serpentinite host-rock is generated by CO2, SiO2 -rich H2O hydrothermal fluid which includes As, Ba, Sb and Sr. Low precious metal (Au, Ag) contents of the alteration assemblages indicate lack of these metals in the fluid. Primary assemblages of the alteration are carbonate rocks that are followed by silica-carbonate rocks and birbirites, respectively. Petrographic studies and chemical analyses suggested an alkaline and moderate to high temperature (350,400°C) fluid with low oxygen and sulphur fugacity for the carbonatization of the serpentinites. The low temperature phases observed in the subsequent silicification indicated that the fluid cooled during progressive alteration. The increasing Fe-oxide content and sulphur phases also suggested increasing oxygen and sulphur fugacity during this secondary process and silica-carbonate rock formation. The occurrence of birbirites is considered as a result of reactivation of tectonic features. These rocks are classified in two sub-groups; the Group 1 birbirites show analogous rare earth element (REE) trends with the serpentinite host-rock, and the Group 2 birbirites simulate the REE trends of the nearby tectonic granitoid slices. The unorthodox REE trend of Group 2 birbirites is interpreted to have resulted from a mobilization process triggered by the weathering solutions rather than being products of enrichment by the higher temperature hydrothermal activity. Copyright © 2006 John Wiley & Sons, Ltd. [source] The Direct Determination of Rare Earth Elements in Basaltic and Related Rocks using ICP-MS: Testing the Efficiency of Microwave Oven Sample Decomposition ProceduresGEOSTANDARDS & GEOANALYTICAL RESEARCH, Issue 2 2008Margareth S. Navarro éléments Terres Rares; attaque acide dans un four à micro onde; bombes Parr; ICP-MS; techniques de décomposition Tests are described showing the results obtained for the determination of REE and the trace elements Rb, Y, Zr, Nb, Cs, Ba, Hf, Ta, Pb, Th and U with ICP-MS methodology for nine basaltic reference materials, and thirteen basalts and amphibolites from the mafic-ultramafic Niquelândia Complex, central Brazil. Sample decomposition for the reference materials was performed by microwave oven digestion (HF and HNO3, 100 mg of sample), and that for the Niquelândia samples also by Parr bomb treatment (5 days at 200°C, 40 mg of sample). Results for the reference materials were similar to published values, thus showing that the microwave technique can be used with confidence for basaltic rocks. No fluoride precipitates were observed in the microwave-digested solutions. Total recovery of elements, including Zr and Hf, was obtained for the Niquelândia samples, with the exception of an amphibolite. For this latter sample, the Parr method achieved a total digestion, but not so the microwave decomposition; losses, however, were observed only for Zr and Hf, indicating difficulty in dissolving Zr-bearing minerals by microwave acid attack. Les Terres Rares et les éléments en trace suivants: Rb, Y, Zr, Nb, Cs, Ba, Hf, Ta, Pb, Th et U, ont été analysés par ICP-MS dans neuf matériaux de référence de composition basaltique et treize basaltes et amphibolites du Complexe basique -ultrabasique Niquelândia (centre du Brésil). Les matériaux de référence ont été mis en solution par attaque acide dans un four à micro ondes (HF et HNO3, 100 mg d'échantillon) et ceux de Niquelândia l'ont été aussi par attaque dans des bombes Parr (5 jours à 200°C, 40 mg d'échantillon). Les résultats obtenus sur les matériaux de référence sont identiques aux valeurs publiées, montrant que la technique d'attaque par micro onde peut être appliquée en toute confiance aux roches basaltiques. Aucun précipité de fluorure n'a été observé dans les solutions résultantes de l'attaque par micro onde. L'extraction des éléments a été totale, même pour Zr et Hf, pour les échantillons de Niquelândia, sauf pour une amphibole où seule la méthode d'attaque avec la bombe Parr a permis une extraction totale. Néanmoins, les pertes ne concernaient que Zr et Hf, révélant donc une certaine difficulté de la technique d'attaque par micro onde à détruire les minéraux contenant Zr. [source] Preparation of a Synthetic Titanite Glass Calibration Material for In Situ Microanalysis by Direct Fusion in Graphite Electrodes: A Preliminary Characterisation by EPMA and LA-ICP-MSGEOSTANDARDS & GEOANALYTICAL RESEARCH, Issue 2 2005Magne Ødegård matériaux de calibration; microanalyse; fusion directe; électrodes de graphite; verre de titanite This paper describes a technique for the preparation of a titanite (CaTiSiO5) glass calibration material for use in in situ microanalysis of major, minor, and trace elements in geological materials. The starting composition was a titanite matrix doped with minor and trace elements at , 200 ,g g -1. The elements Sc, Y, REEs, Th and U were added in the form of nitrates in solution, and the elements V, Cr, Mn, Fe, Co, Ni, Zr, Nb, Hf and W were added as solid oxides. The synthetic titanite glass was produced by direct fusion by resistance heating in graphite electrodes at 1600-1700 °C, and quenched in air. Backscattered electron images indicate good homogeneity, with no signs of separate phases or vesicles, and analysis of the major elements Ca, Ti and Si by electron microprobe showed relative standard deviations between 0.5 and 0.7%, based on six independent measurements. Deviations from nominal concentrations for Ca, Si and Ti were measured to -1.2, -3.3 and -0.8%, respectively. The homogeneity of the trace elements in the glass was assessed by LA-ICP-MS analyses, using NIST SRM 610, 612 and 616 as external calibrators, and Ca as the internal standard element. Determinations were made both with a quadrupole mass spectrometer and a sector field instrument, and both raster and spot modes of analysis were used. For the majority of doped elements, precision was better than 10%, and relative deviations from nominal values were, with few exceptions, between 5 and 10%. Cet article décrit une technique de préparation d'un verre de composition CaTiSiO5 (titanite) pour l'utiliser comme matériau de calibration lors de microanalyses in situ des éléments majeurs, mineurs et en trace dans des matériaux géologiques. La composition de départ a une matrice de titanite, dopée avec des éléments mineurs et en trace à une concentration de , 200 ,g g-1. Les éléments Sc, Y, REE, Th et U ont été ajoutés sous forme de nitrates en solution et les éléments V, Cr, Mn, Fe, Co, Ni, Zr, Nb, Hf et W sous forme d'oxydes solides. Le verre synthétique de titanite a été produit par fusion directe avec un chauffage par des résistances dans des électrodes de graphite à 1600-1700 °C suivi d'un refroidissement rapide à l'air. Les images obtenues par électrons rétrodiffusés montrent que le verre présente une bonne homogénéité, sans aucun signe de phases individualisées ou de vésicules, et l'analyse des éléments majeurs Ca, Ti et Si par microsonde électronique a des déviations standard relatives (RSD) entre 0.5 et 0.7% provenant de six mesures indépendantes. Les déviations par rapport aux concentrations calculées, pour Ca, Si et Ti, sont de -1.2, -3.3 et -0.8% respectivement. L'homogénéité de répartition des éléments en trace dans le verre a été vérifiée par des analyses LA-ICP-MS, en utilisant les matériaux de référence NIST SRM 610, 612 et 616 pour la calibration externe et Ca comme élément standard interne. Les déterminations ont été faites avec un spectromètre de masse de type quadrupôle et un autre de type secteur magnétique, par des analyses à la fois en mode balayage et en mode ponctuel. Pour la majorité des éléments dopés, la précision est meilleure que 10% et les déviations standard relatives par rapport aux valeurs calculées sont, à quelques exceptions près, entre 5 et 10%. [source] Accurate U-Pb Age and Trace Element Determinations of Zircon by Laser Ablation-Inductively Coupled Plasma-Mass SpectrometryGEOSTANDARDS & GEOANALYTICAL RESEARCH, Issue 3 2004Honglin Yuan LA-ICP-MS; laser excimer; zircon; géochronologie; éléments en trace Various zircons of Proterozoic to Oligocene ages (1060-31 Ma) were analysed by laser ablation-inductively coupled plasma-mass spectrometry. Calibration was performed using Harvard reference zircon 91500 or Australian National University reference zircon TEMORA 1 as external calibrant. The results agree with those obtained by SIMS within 2s error. Twenty-four trace and rare earth elements (P, Ti, Cr, Y, Nb, fourteen REE, Hf, Ta, Pb, Th and U) were analysed on four fragments of zircon 91500. NIST SRM 610 was used as the reference material and 29Si was used as internal calibrant. Based on determinations of four fragments, this zircon shows significant intra-and inter-fragment variations in the range from 10% to 85% on a scale of 120 ,m, with the variation of REE concentrations up to 38.7%, although the chondrite-normalised REE distributions are very similar. In contrast, the determined age values for zircon 91500 agree with TIMS data and are homogeneous within 8.7 Ma (2s). A two-stage ablation strategy was developed for optimising U-Pb age determinations with satisfactory trace element and REE results. The first cycle of ablation was used to collect data for age determination only, which was followed by continuous ablation on the same spot to determine REE and trace element concentrations. Based on this procedure, it was possible to measure zircon ages as low as 30.37 0.39 Ma (MSWD = 1.4; 2s). Other examples for older zircons are also given. Différents zircons d'âges variant du Protérozoïque à l'Oligocène (1060-31 Ma) ont été analysés par spectrométrie avec source à plasma induit et ablation laser. La calibration a été faite en utilisant le zircon 91500 de référence de Harvard ou le zircon TEMORA 1 de référence de l'Université Nationale Australienne comme calibrant externe. Les résultats sont en accord avec ceux obtenus par SIMS aux erreurs analytiques près (2s). Vingt-quatre éléments en trace et Terres Rares (P, Ti, Cr, Y, Nb, quatorze ETR, Hf, Ta, Pb, Th et U) ont été analysés sur quatre fragments du zircon 91500. Le standard SRM 610 de NIST a été utilisé comme matériau de référence et 29Si comme calibrant interne. À partir des déterminations faites sur ces quatre fragments, ce zircon montre des variations intra et inter fragments de l'ordre de 10%à 85%à une échelle de 120 ,m, avec des variations des concentrations de Terres Rares allant jusquà 38.7%, bien que le spectre de Terres Rares normalisé aux chondrites reste très constant. Au contraire, les âges déterminés pour le zircon 91500 sont en accord avec les résultats de TIMS et sont homogènes à 8.7 Ma près (2s). Une stratégie d'ablation en deux étapes a été développée pour optimiser les déterminations d'âges U-Pb, et avoir des résultats de Terres Rares et d'éléments en trace satisfaisants. Le premier cycle d'ablation était utilisé pour collecter les données nécessaires à la détermination de l'âge seulement et était suivi d'un cycle d'ablation continue sur le même spot, pour déterminer les concentrations en Terres Rares et en éléments en trace. Grâce à cette procédure, il a été possible de mesurer des âges sur zircons aussi récents que 30.37 0.39 Ma (MSWD = 1.4; 2s). D'autres exemples sur des zircons plus vieux sont aussi donnés. [source] Routine Analyses of Trace Elements in Geological Samples using Flow Injection and Low Pressure On-Line Liquid Chromatography Coupled to ICP-MS: A Study of Geochemical Reference Materials BR, DR-N, UB-N, AN-G and GHGEOSTANDARDS & GEOANALYTICAL RESEARCH, Issue 2-3 2001Jean Carignan géostandards; éléments traces; flow injection; chromatographie liquide; ICP-MS We describe analytical procedures for trace element determinations developed at the CNRS Service d'Analyse des Roches et des Minéraux (SARM) and report results obtained for five geochemical reference materials: basalt BR, diorite DR-N, serpentinite UB-N, anorthosite AN-G and granite GH. Results for rare earth elements, U and Th are also reported for other reference materials including dunite DTS-1, peridotite PCC-1 and basalt BIR-1. All rocks were decomposed using alkali fusion. Analyses were done by flow injection ICP-MS and by on-line low pressure liquid chromatography (LC)-ICP-MS for samples containing very low REE, U and Th concentrations. This latter method yielded limits of determination much lower than data by direct introduction and eliminated possible isobaric interference on these elements. Although results agree with most of the working values, when available, results for some elements differed slightly from the recommended concentrations. In these cases, we propose new values for Co, Y and Zn in basalt BR, Zr in diorite DR-N, Sr and U in granite GH, and Ga and Y in anorthosite AN-G. Furthermore, although the Sb concentration measured in AN-G was very close to our limit of determination, our value (0.3 ± 0.1 ,g g,1) is much lower than the reported working value of 1.4 ± 0.2 ,g g,1. These new values would need to be confirmed by a new inter-laboratory programme to further characterise these reference materials. Results obtained for REE, Th and U concentrations using the on-line low pressure LC-ICP-MS yielded good limits of determination (ng g,1to sub-ng g,1for rocks and ng l,1to sub-ng l,1for natural waters) and accurate results. The efficiency of the matrix separation allowed accurate measurements of Eu without the need to correct the BaO isobaric interference for samples having Ba/Eu ratios as high as 27700. For REE concentrations in PCC-1 and DTS-1, differences with values reported in the literature are interpreted as resulting from possible heterogeneity of the reference materials. Thorium and U values are proposed for these two samples, as well as for AN-G and UB-N. Nous rapportons les procédures d'analyse pour les éléments traces développées au Service d'Analyse des Roches et des Minéraux (SARM) du CNRS et les résultats obtenus pour 5 géostandards: le basalte BR, la diorite DR-N, la serpentinite UB-N, l'anorthosite AN-G et le granite GH. Des résultats obtenus pour les Terres Rares (REE), l'uranium et le thorium sont aussi rapportés pour d'autres matériaux de référence tels que la dunite DTS-1, la péridotite PCC-1 et le basalte BIR-1. Les roches ont été décomposées par fusion alcaline. Les analyses ont été faites par Flow Injection ICP-MS et par chromatographie liquide basse pression en ligne sur un ICP-MS pour les très faibles teneurs en REE, U et Th. Cette dernière méthode permet d'avoir une meilleure limite de détermination que celle par introduction directe et d'éliminer certaines interférences isobariques sur ces éléments. Bien que, dans la majorité des cas, nous ayons mesuré les valeurs de référence telles que rapportées dans la littérature, certaines concentrations mesurées diffèrent légèrement des valeurs recommandées. Ainsi, nous proposons de nouvelles valeurs de Co, Y et Zn pour le basalte BR, de Zr pour la diorite DR-N, de Sr et U pour le granite GH et de Ga et Y pour l'anorthosite AN-G. De plus, bien que la concentration en Sb mesurée pour AN-G soit très proche de notre limite de détermination, notre valeur (0.3 ± 0.1 ,g g,1) est bien inférieure à celle rapportée dans la littérature (1.4 ± 0.2 ,g g,1). Ces nouvelles valeurs devraient être confirmées par une nouvelle campagne de caractérisation inter laboratoire pour ces géostandards. Les résultats obtenus pour les REE, U et Th par chromatographie liquide basse pression en ligne sur un ICP-MS sont justes et livrent des limites de détermination faibles au niveau du ng g,1à sub-ng g,1pour les roches et ng l,1à sub-ng l,1pour les eaux naturelles. La séparation de la matrice est efficace et permet une mesure juste de Eu sans correction d'interférence générée par l'oxyde de Ba, et ce même pour des échantillons possédant des rapports Ba/Eu très élevés, de l'ordre de 27700. Les concentrations en REE mesurées pour les échantillons PCC-1 et DTS-1 peuvent être significativement différentes de celle rapportées dans la littérature, probablement à cause d'une hétérogénéité de ces échantillons. Des valeurs de concentrations en U et Th sont proposées pour ces deux échantillons ainsi que pour AN-G et UB-N. [source] The geochemical characteristics of the Paraná River suspended sediment load: an initial assessmentHYDROLOGICAL PROCESSES, Issue 7 2003Pedro J. Depetris Abstract Most water in the Paraná River drainage basin is supplied by the tropical Upper Paraná (over 60% of the total annual water discharge, 550 km3). The total suspended solids (TSS) load (c. 80 × 106 t year,1), however, is essentially furnished (50,70%) by the mountainous, arid and mostly sediment-mantled upper Bermejo River drainage basin. This characteristic suggests that the Paraná River solid load (TSS, 600 km upstream from the mouth) is largely recycled sedimentary material, whose discharge-weighted mean chemical index of alteration is c. 71. The extended UCC-normalized multi-elemental diagrams are similar to those of other world rivers. Nevertheless, the detailed inspection of UCC-normalized rare earth element (REE) ,spidergrams' reveals a lithological source for the Paraná River TSS that might be compatible with either tholeiitic flood basalts (widespread in the upper drainage) or with young Andean intermediate volcanic rocks. In view of the Bermejo River's dominant role as a sediment contributor, we feel that the signature preserved in the Paraná's TSS is the latter. Conversely, the Uruguay River TSS REE signature is certainly determined by the extensive weathering products of Jurassic,Cretaceous tholeiitic basalts. Copyright © 2003 John Wiley & Sons, Ltd. [source] Announcement effects on exchange ratesINTERNATIONAL JOURNAL OF FINANCE & ECONOMICS, Issue 1 2009Mikael Bask Abstract An asset pricing model for exchange rate determination is presented, where technical analysis in currency trade is incorporated in the form of a moving average technique. As a result, the model has jmax+1 rational expectations equilibria (REE), where jmax is large, since jmax past exchange rates affect the current rate due to technical analysis. There is, however, a unique REE that is economically relevant, and focusing on this REE, it is shown that the exchange rate is much more sensitive to a change in money supply than when technical analysis is absent in currency trade. This result is important since it sheds light on the so-called exchange rate disconnect puzzle in international finance. Copyright © 2008 John Wiley & Sons, Ltd. [source] Optimizing the formula of rare earth-bearing materials: A computational chemistry investigationINTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, Issue 3 2007Marjorie Bertolus Abstract We present a computational investigation into the nature of bonds formed by rare earth elements (REE) in materials. This study focuses on the incorporation of neodymium in minerals called apatites, which are derived from fluorapatite: Ca10(PO4)6F2. These minerals, which allow many substitutions on all three Ca, P, and F sites, are considered as potential host phases for radioactive elements separated from nuclear waste. Nd and trivalent actinides have very similar physical and chemical properties, and Nd is not radioactive and much more easily handled. It is therefore very often used as a surrogate for actinides with oxidation degree three in experimental studies. Several formulas can be considered to substitute Nd3+ to Ca2+ and maintain charge balance of the apatite. Existing experimental and theoretical studies, however, mostly concern the Ca9Nd(PO4)5SiO4F2 formula, where the Nd incorporation is compensated by the replacement of one PO by a SiO group. Moreover, only the cation position has been studied, whereas the silicate position and its influence on stability are unknown. We present a more general investigation of possible charge compensations on the one hand, and of the various resulting configurations on the other. All possible configurations of the two formulas Ca9Nd(PO4)5 SiO4F2 and Ca8NdNa(PO4)6F2 have been considered. Calculations have been performed within the framework of density functional theory (DFT). A computation scheme that permits good accuracy in these systems within reasonable computation times is determined. The results obtained for cohesion energies, geometries, and electronic densities are discussed. As for the formulation, it is shown that the Ca8NdNa(PO4)6F2 formula is less stable than the fluorapatite, while Ca9Nd(PO4)5 SiO4F2 is more stable. For the structures, it is found that Nd substitutes preferably in the second cationic site. Moreover, the most stable structures exhibit the shortest Na,Nd or Nd,Si distances. Local charge balance therefore seems favorable. Then, it is shown that Nd forms covalent bonds both in apatite and in britholite, while Na forms ionic bonds. Finally, a first correlation between the material stability and the covalent character of the bonds formed is established. © 2006 Wiley Periodicals, Inc. Int J Quantum Chem, 2007 [source] Weaning pig performance and faecal microbiota with and without in-feed addition of rare earth elementsJOURNAL OF ANIMAL PHYSIOLOGY AND NUTRITION, Issue 9-10 2006M. Kraatz Summary Two 6-week feeding trials were conducted on a total of 112 newly weaned piglets to examine the recently reported growth promoting effects of dietary rare earth elements (REE) in European pig production. Rare earth element-diets were supplemented with a REE-citrate premix of lanthanum and the light lanthanoides cerium, praseodymium and neodymium at 200 mg/kg for 6 weeks after weaning. Overall for both trials, growth performance of REE-citrate and control fed piglets did not differ significantly (p > 0.05). An early enhancive tendency for REE-citrate in trial 1 (feed conversion ratio, FCR ,3%, p = 0.15) proved irreproducible in trial 2. In the late period of trial 1, in-feed addition of REE-citrate significantly impaired piglet performance (FCR + 8%, p =0.01). A cultivation-independent molecular approach, polymerase chain reaction-denaturing gradient gel electrophoresis was further applied to assess REE induced alterations in the predominant faecal microbiota from weaning pigs. Calculation of various ecological characteristics does not indicate (p > 0.05) an often discussed selective effect on local microbial composition of dietary REE. [source] Resting energy expenditure and body composition of Labrador Retrievers fed high fat and low fat dietsJOURNAL OF ANIMAL PHYSIOLOGY AND NUTRITION, Issue 5-6 2006S. Yoo Summary A high dietary fat intake may be an important environmental factor leading to obesity in some animals. The mechanism could be either an increase in caloric intake and/or a decrease in energy expenditure. To test the hypothesis that high fat diets result in decreased resting energy expenditure (REE), we measured REE using indirect calorimetry in 10-adult intact male Labrador Retrievers, eating weight-maintenance high-fat (HF, 41% energy, average daily intake: 8018 ± 1247 kJ/day, mean ± SD) and low-fat (LF, 14% energy, average daily intake: 7331 ± 771 kJ/day) diets for a 30-day period. At the end of each dietary treatment, body composition measurements were performed using dual-energy X-ray absorptiometry. The mean ± SD REE was not different between diets (4940 ± 361 vs. 4861 ± 413 kJ/day on HF and LF diets respectively). Measurements of fat-free mass (FFM) and fat mass (FM) also did not differ between diets (FFM: 26.8 ± 2.3 kg vs. 26.3 ± 2.5 kg; FM: 3.0 ± 2.3 vs. 3.1 ± 1.5 kg on HF and LF diets respectively). In summary, using a whole body calorimeter, we found no evidence of a decrease in REE or a change in body composition on a HF diet compared with LF diet. [source] Changes in body composition in men and women with advanced nonsmall cell lung cancer (NSCLC) undergoing chemotherapyJOURNAL OF HUMAN NUTRITION & DIETETICS, Issue 5 2003M. N. Harvie Abstract Background Men with nonsmall cell lung cancer (NSCLC) are more susceptible to weight loss than women. The composition and aetiology of these gender specific weight changes are not known. Methods Measurements of body mass, body composition and energy balance (resting energy expenditure and energy intake) were made in 15 men and six women before and after chemotherapy for NSCLC. Results Over the course of chemotherapy minimal weight change was observed in both men and women. Men increased body fat from 25.0 ± 5.5 to 27.9 ± 7.9% (P < 0.05) whereas fat free mass (FFM) tended to decrease (P = 0.063). There was no change in body fat or FFM in the women. In the men resting energy expenditure decreased over the course of chemotherapy from 113.2 ± 15.9 to 105.1 ± 10.1% of the value predicted from the Harris Benedict equation (P < 0.05). In the women resting energy expenditure (REE) did not alter. Conclusion Over the course of chemotherapy for NSCLC, men and women appear to have different patterns of change in body composition and in energy expenditure. [source] Prograde metamorphic sequence of REE minerals in pelitic rocks of the Central Alps: implications for allanite,monazite,xenotime phase relations from 250 to 610 °CJOURNAL OF METAMORPHIC GEOLOGY, Issue 5 2008E. JANOTS Abstract The distribution of REE minerals in metasedimentary rocks was investigated to gain insight into the stability of allanite, monazite and xenotime in metapelites. Samples were collected in the central Swiss Alps, along a well-established metamorphic field gradient that record conditions from very low grade metamorphism (250 °C) to the lower amphibolite facies (,600 °C). In the Alpine metapelites investigated, mass balance calculations show that LREE are mainly transferred between monazite and allanite during the course of prograde metamorphism. At very low grade metamorphism, detrital monazite grains (mostly Variscan in age) have two distinct populations in terms of LREE and MREE compositions. Newly formed monazite crystallized during low-grade metamorphism (<440 °C); these are enriched in La, but depleted in Th and Y, compared with inherited grains. Upon the appearance of chloritoid (,440,450 °C, thermometry based on chlorite,choritoid and carbonaceous material), monazite is consumed, and MREE and LREE are taken up preferentially in two distinct zones of allanite distinguishable by EMPA and X-ray mapping. Prior to garnet growth, allanite acquires two growth zones of clinozoisite: a first one rich in HREE + Y and a second one containing low REE contents. Following garnet growth, close to the chloritoid,out zone boundary (,556,580 °C, based on phase equilibrium calculations), allanite and its rims are partially to totally replaced by monazite and xenotime, both associated with plagioclase (± biotite ± staurolite ± kyanite ± quartz). In these samples, epidote relics are located in the matrix or as inclusions in garnet, and these preserve their characteristic chemical and textural growth zoning, indicating that they did not experience re-equilibration following their prograde formation. Hence, the partial breakdown of allanite to monazite offers the attractive possibility to obtain in situ ages, representing two distinct crystallization stages. In addition, the complex REE + Y and Th zoning pattern of allanite and monazite are essential monitors of crystallization conditions at relatively low metamorphic grade. [source] Trace-element distributions in silicates during prograde metamorphic reactions: implications for monazite formationJOURNAL OF METAMORPHIC GEOLOGY, Issue 4 2008S. L. CORRIE Abstract To assess the petrogenetic relationship between monazite and major silicates during prograde metamorphism, REE were measured across coexisting zoned silicates in garnet through kyanite-grade pelitic schists from the Great Smoky Mountains, western Blue Ridge terrane, southern Appalachians, to establish REE concentrations and distributions before and after the monazite-in isograd, and to identify the role major silicates play in the formation of monazite. Results indicate significant scavenging of light rare-earth elements (LREE) from silicates during the monazite-in isograd reaction; however, the absolute concentration of LREE hosted in the silicates was insufficient to produce monazite in the quantity observed in these schists. Monazite must have formed mainly from either the dissolution of allanite or some other source of concentrated LREE (possibly adsorbed onto grain boundaries), even though direct evidence for allanite is lacking in a majority of the samples. Laser-ablation ICP-MS analyses and theoretical thermodynamic calculations show that monazite may have formed as a result of contributions from both allanite and major silicates. Allanite breakdown initially formed monazite, and monazite production drew LREE liberated from allanite, major silicates and possibly from crystal boundaries. In many rocks the reaction was further promoted by the staurolite-in reaction, allowing for rapid, isogradic monazite growth. [source] Geochemical constraints of the eclogite and granulite facies metamorphism as recognized in the Raobazhai complex from North Dabie Shan, ChinaJOURNAL OF METAMORPHIC GEOLOGY, Issue 1 2001Y. L. Xiao Abstract A combined study of major and trace elements, fluid inclusions and oxygen isotopes has been carried out on garnet pyroxenite from the Raobazhai complex in the North Dabie Terrane (NDT). Well-preserved compositional zoning with Na decreasing and Ca and Mg increasing from the core to rim of pyroxene in the garnet pyroxenite indicates eclogite facies metamorphism at the peak metamorphic stage and subsequent granulite facies metamorphism during uplift. A P,T path with substantial heating (from c. 750 to 900 °C) after the maximum pressure reveals a different uplift history compared with most other eclogites in the South Dabie Terrane (SDT). Fluid inclusion data can be correlated with the metamorphic grade: the fluid regime during the peak metamorphism (eclogite facies) was dominated by N2 -bearing NaCl-rich solutions, whereas it changed into CO2 -dominated fluids during the granulite facies retrograde metamorphism. At a late retrograde metamorphic stage, probably after amphibolite facies metamorphism, some external low-salinity fluids were involved. In situ UV-laser oxygen isotope analysis was undertaken on a 7 mm garnet, and impure pyroxene, amphibole and plagioclase. The nearly homogeneous oxygen isotopic composition (,18OVSMOW = c. 6.7,) in the garnet porphyroblast indicates closed fluid system conditions during garnet growth. However, isotopic fractionations between retrograde phases (amphibole and plagioclase) and garnet show an oxygen isotopic disequilibrium, indicating retrograde fluid,rock interactions. Unusual MORB-like rare earth element (REE) patterns for whole rock of the garnet pyroxenite contrast with most ultra-high-pressure (UHP) eclogites in the Dabie-Sulu area. However, the age-corrected initial ,Nd(t) is ,,2.9, which indicates that the protolith of the garnet pyroxenite was derived from an enriched mantle rather than from a MORB source. Combined with the present data of oxygen isotopic compositions and the characteristic N2 content in the fluid inclusions, we suggest that the protolith of the garnet pyroxenite from Raobazhai formed in an enriched mantle fragment, which has been exposed to the surface prior to the Triassic metamorphism. [source] Raman spectroscopic study of the phosphate mineral churchite-(Y) YPO4·2H2OJOURNAL OF RAMAN SPECTROSCOPY, Issue 2 2010Ray L. Frost Abstract Raman spectroscopy has been used to study the rare-earth mineral churchite-(Y) of formula (Y,REE)(PO4) ·2H2O, where rare-earth element (REE) is a rare-earth element. The mineral contains yttrium and, depending on the locality, a range of rare-earth metals. The Raman spectra of two churchite-(Y) mineral samples from Jáchymov and Medv,dín in the Czech Republic were compared with the Raman spectra of churchite-(Y) downloaded from the RRUFF data base. The Raman spectra of churchite-(Y) are characterized by an intense sharp band at 975 cm,1 assigned to the ,1 (PO43,) symmetric stretching mode. A lower intensity band observed at around 1065 cm,1 is attributed to the ,3 (PO43,) antisymmetric stretching mode. The (PO43,) bending modes are observed at 497 cm,1 (,2) and 563 cm,1 (,4). Some small differences in the band positions between the four churchite-(Y) samples from four different localities were found. These differences may be ascribed to the different compositions of the churchite-(Y) minerals. Copyright © 2009 John Wiley & Sons, Ltd. [source] Looking for a surface treatment to deposit a reactive element with potential industrial use in high temperature oxidation fieldMATERIALS AND CORROSION/WERKSTOFFE UND KORROSION, Issue 12 2005G. Bonnet Abstract In order to introduce a so-called reactive element simultaneously at all the surfaces of a NiCr (Ni-20wt.%Cr-1.5wt.%Si) metallic substrate alloy, an easy to apply surface treatment was used: an yttrium containing thin film (constituted of a hydrated yttrium hydroxide nitrate) was electrodeposited from a mixed water-ethanol solution. After a thermal conversion treatment at 600 °C under argon, leading to an Y2O3 coating, specimens were submitted to high-temperature oxidation testing, under artificial air at atmospheric pressure, in order to evaluate in these conditions the effect of the coatings on the behaviour of the studied alloy. Expected effects of the introduced reactive element (REE) were effectively shown: decrease of the coated sample weight gain, suppression of the formation of the base metal oxides and change of the oxide grains morphology. [source] Vapor-condensed phase processes in the early solar systemMETEORITICS & PLANETARY SCIENCE, Issue 1 2010Lawrence GROSSMAN Many refractory inclusions in CM2 chondrites contain a relatively SiO2 -poor assemblage (spinel, hibonite, grossite, perovskite, corundum) that represents a high-temperature stage of condensation, and some may be pristine condensates that escaped later melting. Compact Type A and Type B refractory inclusions, consisting of spinel, melilite, perovskite, Ca-rich clinopyroxene ± anorthite, in CV3 chondrites are more SiO2 -rich and equilibrated with the solar nebular gas at a slightly lower temperature. Textures of many of these objects indicate that they underwent melting after condensation, crystallizing into the same phase assemblage as their precursors. The Ti3+/Ti4+ ratio of their pyroxene indicates that this process occurred in a gas whose oxygen fugacity () was approximately 8.5 log units below that of the iron-wüstite buffer, making them the only objects in chondrites known to have formed in a system whose composition was close to that of the sun. Relative to CI chondrites, these inclusions are uniformly enriched in a group of elements (e.g., Ca, REE, Zr, Ta, Ir) that are chemically diverse except for their high condensation temperatures in a system of solar composition. The enrichment factor, 17.5, can be interpreted to mean that these objects represent either the first 5.7 wt% of the condensable matter to condense during nebular cooling or the residue after vaporization of 94.3% of a CI chondrite precursor. The Mg and Si isotopic compositions of Types A and B inclusions are mass-fractionated by up to 10 and 4 ,/amu, respectively. When interpreted in terms of Rayleigh fractionation during evaporation of Mg and Si from the inclusions while they were molten, the isotopic compositions imply that up to 60% of the Mg and up to 25% of the Si were evaporated, and that approximately 80% of the enrichment in refractory (CaO+Al2O3) relative to more volatile (MgO+SiO2) in the average inclusion is due to initial condensation and approximately 20% due to subsequent evaporation. The mineralogical composition, including the Ti3+/Ti4+ ratio of the pyroxene, in Inti, a particle sampled from Comet Wild 2 by the Stardust spacecraft, is nearly identical to that of a Type B inclusion, indicating that comets contain not only the lowest-temperature condensates in the form of ices but the highest-temperature condensates as well. The FeO/(FeO+MgO) ratios of olivine and pyroxene in the matrix and chondrules of carbonaceous and ordinary chondrites are too high to be made in a system of solar composition, requiring s only 1 or 2 log units below iron-wüstite, more than 105 times higher than that of a solar gas. Various ways have been devised to generate cosmic gases sufficiently oxidizing to stabilize significant FeO in olivine at temperatures above those where Fe-Mg interdiffusion in olivine ceases. One is by vertical settling of dust toward the nebular midplane, enriching a region in dust relative to gas. Because dust is enriched in oxygen compared to carbon and hydrogen relative to solar composition, a higher results from total vaporization of the region, but the factor by which theoretical models have so far enriched the dust is 10 times too low. Another is by transporting icy bodies from the outer part of the nebula into the hot, inner part where vaporization of water ice occurs. Not only does this method fail to make the needed by a factor of 30,1000 but it also ignores simultaneous evaporation of carbon-bearing ices that would make the even lower. [source] High oxidation state during formation of Martian nakhlitesMETEORITICS & PLANETARY SCIENCE, Issue 1 2010Anja SZYMANSKI Oxygen fugacities obtained cluster closely around the FMQ (Fayalite,Magnetite,Quartz) buffer (NWA998 = FMQ , 0.8; Y-000593 = FMQ , 0.7; Nakhla = FMQ; Lafayette = FMQ + 0.1). The corresponding equilibration temperatures are 810 °C for Nakhla and Y-000593, 780 °C for Lafayette and 710 °C for NWA998. All nakhlites record oxygen fugacities significantly higher and with a tighter range than those determined for Martian basalts, i.e., shergottites whose oxygen fugacities vary from FMQ , 1 to FMQ , 4. It has been known for some time that nakhlites are different from other Martian meteorites in chemistry, mineralogy, and crystallization age. The present study adds oxygen fugacity to this list of differences. The comparatively large variation in fO2 recorded by shergottites was interpreted by Herd et al. (2002) as reflecting variable degrees of contamination with crustal fluids that would also carry a light rare earth element (REE)-enriched component. The high oxygen fugacities and the large light REE enrichment of nakhlites fit qualitatively in this model. In detail, however, it is found that the inferred contaminating phase in nakhlites must have been different from those in shergottites. This is supported by unique 182W/184W and 142Nd/144Nd ratios in nakhlites, which are distinct from other Martian meteorites. It is likely that the differences in fO2 between nakhlites and other Martian meteorites were established very early in the history of Mars. Parental trace element rich and trace element poor regions (reservoirs) of Mars mantle (Brandon et al. 2000) must have been kept isolated throughout Martian history. Our results further show significant differences in closure temperature among the different nakhlites. The observed range in equilibration temperatures together with similar fO2 values is attributable to crystallization of nakhlites in the same cumulate pile or lava layer at different burial depths from 0.5 to 30 m below the Martian surface in agreement with Mikouchi et al. (2003) and is further confirmed by similar crystallization ages of about 1.3 Ga ago (e.g., Misawa et al. 2003). [source] Petrography, mineralogy, and trace element geochemistry of lunar meteorite Dhofar 1180METEORITICS & PLANETARY SCIENCE, Issue 9 2009Aicheng Zhang Dhofar 1180 is predominantly composed of fine-grained matrix with abundant mineral fragments and a few lithic and glassy clasts. Lithic clasts show a variety of textures including cataclastic, gabbroic, granulitic, ophitic/subophitic, and microporphyritic. Both feldspathic and mafic lithic clasts are present. Most feldspathic lithic clasts have a strong affinity to ferroan anorthositic suite rocks and one to magnesian suite rocks. Mafic lithic clasts are moderately to extremely Fe-rich. The Ti/[Ti+Cr]-Fe/[Fe+Mg] compositional trend of pyroxenes in mafic lithic clasts is consistent with that of low-Ti mare basalts. Glasses display a wide chemical variation from mafic to feldspathic. Some glasses are very similar to those from Apollo 16 soils. KREEP components are essentially absent in Dhofar 1180. One glassy clast is rich in K, REE and P, but its Mg/[Mg+Fe] is very low (0.25). It is probably a last-stage differentiation product of mare basalt. Molar Fe/Mn ratios of both olivine and pyroxene are essentially consistent with a lunar origin. Dhofar 1180 has a LREE-enriched (La 18 × CI, Sm 14 × CI) pattern with a small positive Eu anomaly (Eu 15 × CI). Th concentration is 0.7 ppm in Dhofar 1180. Petrography, mineralogy, and trace element geochemistry of Dhofar 1180 are different from those of other lunar meteorites, indicating that Dhofar 1180 represents a unique mingled lunar breccia derived from an area on the lunar nearside but far away from the center of the Imbrium Basin. [source] Petrology of Martian meteorite Northwest Africa 998METEORITICS & PLANETARY SCIENCE, Issue 5 2008Allan H. TREIMAN This 456-gram, partially fusion-crusted meteorite consists of (by volume) ,75% augite (core composition Wo39En39Fs22), ,9% olivine (Fo35), ,7% plagioclase (Ab61An35) as anhedra among augite and olivine, ,3.5% low-calcium pyroxenes (pigeonite and orthopyroxene) replacing or forming overgrowths on olivine and augite, ,1% titanomagnetite, and other phases including potassium feldspar, apatite, pyrrhotite, chalcopyrite, ilmenite, and fine-grained mesostasis material. Minor secondary alteration materials include "iddingsite" associated with olivine (probably Martian), calcite crack fillings, and iron oxide/hydroxide staining (both probably terrestrial). Shock effects are limited to minor cataclasis and twinning in augite. In comparison to other nakhlites, NWA 998 contains more low-calcium pyroxenes and its plagioclase crystals are blockier. The large size of the intercumulus feldspars and the chemical homogeneity of the olivine imply relatively slow cooling and chemical equilibration in the late- and post-igneous history of this specimen, and mineral thermometers give subsolidus temperatures near 730 °C. Oxidation state was near that of the QFM buffer, from about QFM-2 in earliest crystallization to near QFM in late crystallization, and to about QFM + 1.5 in some magmatic inclusions. The replacement or overgrowth of olivine by pigeonite and orthopyroxene (with or without titanomagnetite), and the marginal replacement of augite by pigeonite, are interpreted to result from late-stage reactions with residual melts (consistent with experimental phase equilibrium relationships). Apatite is concentrated in planar zones separating apatite-free domains, which suggests that residual magma (rich in P and REE) was concentrated in planar (fracture?) zones and possibly migrated through them. Loss of late magma through these zones is consistent with the low bulk REE content of NWA 998 compared with the calculated REE content of its parent magma. [source] Evolution of the winonaite parent body: Clues from silicate mineral trace element distributionsMETEORITICS & PLANETARY SCIENCE, Issue 4 2008Christine FLOSS Textural evidence in these meteorites, including the presence of a plagioclase/clinopyroxene-rich lithology and coarse-grained olivine lithologies, suggests that they may have experienced some silicate partial melting. However, trace element distributions in these lithologies do not show any clear signatures for such an event. Pyroxene trace element compositions do exhibit systematic trends, with abundances generally lowest in Pontlyfni and highest in Winona. The fact that the same trends are present for both incompatible and compatible trace elements suggests, however, that the systematics are more likely the result of equilibration of minerals with initially heterogeneous and distinct compositions, rather than partial melting of a compositionally homogeneous precursor. The winonaites have experienced brecciation and mixing of lithologies, followed by varying degrees of thermal metamorphism on their parent body. These factors probably account for the variable bulk rare earth element (REE) patterns noted for these meteorites and may have led to re-equilibration of trace elements in different lithologies. [source] Trace element concentrations in the Mexico-Belize ejecta layer: A link between the Chicxulub impact and the global Cretaceous-Paleogene boundaryMETEORITICS & PLANETARY SCIENCE, Issue 11 2007Jane Wigforss-Lange The ejecta deposits consist of a lower spheroid bed, containing clay and dolomite spheroids, and an upper diamictite bed with boulders and clasts of limestone and dolomite. The matrix of both beds is composed of clay and micritic dolomite. The rare earth element (REE) compositions in the matrix of both units show strong similarities in concentrations and pattern. Furthermore, the Zr/TiO2 scatter plot shows a linear correlation indicating one source. These results indicate that the basal spheroid bed has the same source and was generated during the same event as the overlying diamictite bed, which lends support to a single-impact scenario for the Albion Formation ejecta deposits. The elevated concentrations of non-meteoritic elements such as Sb, As, U, and Zn in the matrix of the lower spheroid bed are regarded to have been derived from the sedimentary target rocks at the Chicxulub impact site. The positive Eu and Ce anomalies in clay concretion and in the matrix of the lower part of the spheroid bed in Albion Island quarry is probably related to processes involved in the impact, such as high temperature and oxidizing conditions. Analogous trace element anomalies have been reported from the distal Cretaceous-Paleogene (K/T) boundary clay layer at different sites. Thus, the trace element signals, reported herein, are regarded to support a genetic link between the Chicxulub impact, the ejecta deposits along the Mexico-Belize border, and the global K/T boundary layer. [source] Northwest Africa 011: A "eucritic" basalt from a non-eucrite parent bodyMETEORITICS & PLANETARY SCIENCE, Issue 3 2005Christine Floss This meteorite bears many similarities to the eucrites it was initially identified with, although oxygen isotopic compositions rule out a genetic relationship. Like many eucrites, NWA 011 crystallized from a source with approximately chondritic proportions of REE, although a slightly LREE-enriched bulk composition with a small positive Eu anomaly, as well as highly fractionated Fe/Mg ratios and depleted Sc abundances (Korotchantseva et al. 2003), suggest that the NWA 011 source experienced some pyroxene and/or olivine fractionation. Thermal metamorphism resulted in homogenization of REE abundances within grains, but NWA 011 did not experience the intergrain REE redistribution seen in some highly metamorphosed eucrites. Despite a similarity in oxygen isotopic compositions, NWA 011 does not represent a basaltic partial melt from the acapulcoite/lodranite parent body. The material from which NWA 011 originated may have been like some CH or CB chondrites, members of the CR chondrite clan, which are all related through oxygen isotopic compositions. The NWA 011 parent body is probably of asteroidal origin, possibly the basaltic asteroid 1459 Magnya. [source] Geochemistry and shock petrography of the Crow Creek Member, South Dakota, USA: Ejecta from the 74-Ma Manson impact structureMETEORITICS & PLANETARY SCIENCE, Issue 1 2004Crispin KATONGO The shocked minerals represent impact ejecta from the 74-Ma Manson impact structure (MIS). This study was aimed at determining the bulk chemical compositions and analysis of planar deformation features (PDFs) of shocked quartz; for the basal and marly units of the Crow Creek Member. We studied samples from the Gregory 84-21 core, Iroquois core and Wakonda lime quarry. Contents of siderophile elements are generally high, but due to uncertainties in the determination of Ir and uncertainties in compositional sources for Cr, Co, and Ni, we could not confirm an extraterrestrial component in the Crow Creek Member. We recovered several shocked quartz grains from basal-unit samples, mainly from the Gregory 84-21 core, and results of PDF measurements indicate shock pressures of at least 15 GPa. All the samples are composed chiefly of SiO2 (29,58 wt%), Al2O3 (6,14 wt%), and CaO (7,30 wt%). When compared to the composition of North American Shale Composite, the samples are significantly enriched in CaO, P2O5, Mn, Sr, Y, U, Cr, and Ni. The contents of rare earth elements (REE), high field strength elements (HFSE), Cr, Co, Sc, and their ratios and chemical weathering trends, reflect both felsic and basic sources for the Crow Creek Member, an inference, which is consistent with the lithological compositions in the environs of the MIS. The high chemical indices of alteration and weathering (CIA' and CIW': 75,99), coupled with the Al2O3 -(CaO*+Na2O)-K2O (A-CN'-K) ratios, indicate that the Crow Creek Member and source rocks had undergone high degrees of chemical weathering. The expected ejecta thicknesses at the sampled locations (409 to 219 km from Manson) were calculated to range from about 1.9 to 12.2 cm (for the present-day crater radius of Manson), or 0.4 to 2.4 cm (for the estimated transient cavity radius). The trend agrees with the observed thicknesses of the basal unit of the Crow Creek Member, but the actually observed thicknesses are larger than the calculated ones, indicating that not all of the basal unit comprises impact ejecta. [source] KREEPy lunar meteorite Dhofar 287A: A new lunar mare basaltMETEORITICS & PLANETARY SCIENCE, Issue 4 2003Mahesh Anand The main portion of this meteorite (Dho 287A) consists of a mare basalt, while a smaller portion of breccia (Dho 287B) is attached on the side. Dho 287A is only the fourth crystalline mare basalt meteorite found on Earth to date and is the subject of the present study. The basalt consists mainly of phenocrysts of olivine and pyroxene set in a finer-grained matrix, which is composed of elongated pyroxene and plagioclase crystals radiating from a common nucleii. The majority of olivine and pyroxene grains are zoned, from core to rim, in terms of Fe and Mg. Accessory minerals include ilmenite, chromite, ulvöspinel, troilite, and FeNi metal. Chromite is invariably mantled by ulvöspinel. This rock is unusually rich in late-stage mesostasis, composed largely of fayalite, Si-K-Ba-rich glass, fluorapatite, and whitlockite. In texture and mineralogy, Dho 287A is a low-Ti mare basalt, with similarities to Apollo 12 (A-12) and Apollo 15 (A-15) basalts. However, all plagioclase is now present as maskelynite, and its composition is atypical for known low-Ti mare basalts. The Fe to Mn ratios of olivine and pyroxene, the presence of FeNi metal, and the bulk-rock oxygen isotopic ratios, along with several other petrological features, are evidence for the lunar origin for this meteorite. Whole-rock composition further confirms the similarity of Dho 287A with A-12 and A-15 samples but requires possible KREEP assimilation to account for its rare-earth-element (REE) contents. Cooling-rate estimates, based on Fo zonation in olivine, yield values of 0.2,0.8°C/hr for the lava, typical for the center of a 10,20 m thick flow. The recalculated major-element concentrations, after removing 10,15% modal olivine, are comparable to typical A-15 mare basalts. Crystallization modeling of the recalculated Dho 287A bulk-composition yields a reasonable fit between predicted and observed mineral abundances and compositions. [source] The pyroxene pallasites, Vermillion and Yamato 8451: Not quite a coupleMETEORITICS & PLANETARY SCIENCE, Issue 4 2000Joseph S. BOESENBERG Both meteorites contain low-Ca and high-Ca pyroxenes (<2% by volume) and have been dubbed "pyroxene pallasites." Pyroxene occurs as large individual grains, as inclusions in olivine and in other pyroxene, and as grains along the edges of olivine. Symplectic overgrowths, sometimes found in Main Group and Eagle Station pallasites, are not seen in the pyroxene pallasites. Olivine compositions are Fa10,12, similar to those of Main Group pallasites. Siderophile trace element data show that metal in the two meteorites have significantly differing compositions that are, for many elements, outside the range of the Main Group and Eagle Station pallasites. These compositions also differ from those of IAB and IIIAB iron meteorites. Rare earth element (REE) patterns in merrillite are similar to those seen in other pallasites, indicating formation by subsolidus reaction between metal and silicate, with the merrillite inheriting its pattern from the surrounding silicates. The O-isotopic compositions of Vermillion and Y-8451 are similar but differ from Main Group or Eagle Station pallasites, as well as other achondrite and primitive achondrite groups. Although Vermillion and Y-8451 have similar mineralogy, pyroxene compositions, REE patterns, and O-isotopic compositions, there is sufficient evidence to resist formally grouping these two meteorites. This evidence includes the texture of Vermillion, siderophile trace element data, and the presence of cohenite in Vermillion. [source] Parkinson's disease patients with bilateral subthalamic deep brain stimulation gain weightMOVEMENT DISORDERS, Issue 2 2004Frédéric Macia MD Abstract Weight, body mass index (BMI) and energy expenditure/energy intake (EE/EI) was studied in 19 Parkinson's disease (PD) patients after subthalamic deep brain stimulation (STN-DBS) versus 14 nonoperated ones. Operated patients had a significant weight gain (WG, + 9.7 ± 7 kg) and BMI increase (+ 4.7 kg/m2). The fat mass was higher after STN-DBS. Resting EE (REE; offdrug/ON stimulation) was significantly decreased in STN-DBS patients, while their daily energy expenditure (DEI) was not significantly different. A significant correlation was found among WG, BMI increase, and pre-operative levodopa-equivalent daily dose, their reduction after STN-DBS, and the differential REE related to stimulation and the REE in the offdrug/OFF stimulation condition. In conclusion, STN-DBS in PD induces a significant WG associated with a reduction in REE without DEI adjustment. © 2003 Movement Disorder Society [source] Changes in body composition after a 12-wk aerobic exercise program in obese boysPEDIATRIC DIABETES, Issue 2 2000Richard A DeStefano Previous studies have shown that vigorous aerobic training programs for obese children result in minimal weight changes, and concluded that they may not be beneficial. Weight change alone may not detect important beneficial changes in body composition associated with vigorous training in these children. Fifteen obese boys (aged 9,12 yr, body mass index (BMI) 31.8±6.5, average percent body fat (%BF) 41±4.2) underwent a supervised aerobic and resistance training program (12 wk, 2 days/wk for 30 min/session), to investigate the effects on weight and body composition. After the 3-month training period, weight loss averaged only 1.5±1.0 kg (not significant), but total body fat decreased by 4.1±1.8 kg (p<0.05) and fat-free mass (FFM) increased by 2.6±1.1 kg (p<0.05) based on hydrostatic weighing. As a result, %BF fell by 10% (p<0.01). There was a 5.8±2.8 mL/kg/min (p<0.05) increase in peak volume of oxygen uptake (VO2), along with a 248±120 kcal/d (p<0.05) increase in resting energy expenditure (REE). Activity questionnaires showed a significant increase in high intensity recreational activities (6.5±1.5 vs 3.5±0.5 h physical activity/wk; p<0.01) in the home and a significant decrease in low intensity activities (7±2.0 vs 12±3.5 h TV viewing/wk; p<0.01). Conclusions: Vigorous supervised aerobic training in obese boys has beneficial effects on body composition, fitness and leisure time activities that are not apparent by measurement of changes in body weight alone. [source] A cellular level approach to predicting resting energy expenditure: Evaluation of applicability in adolescents,AMERICAN JOURNAL OF HUMAN BIOLOGY, Issue 4 2010ZiMian Wang We previously derived a cellular level approach for a whole-body resting energy expenditure (REE) prediction model by using organ and tissue mass measured by magnetic resonance imaging (MRI) combined with their individual cellularity and assumed stable-specific resting metabolic rates. Although this approach predicts REE well in both young and elderly adults, there were no studies in adolescents that specifically evaluated REE in relation to organ,tissue mass. It is unclear whether the approach can be applied to rapidly growing adolescents. The aim of the present study was to evaluate the applicability of the previous developed REE prediction model in adolescents, and to compare its applicability in young and elderly adults. Specifically, we tested the hypothesis that measured REE can be predicted from a combination of individual organ and tissue mass and their related cellularity. This was a 2-year longitudinal investigation. Twenty healthy male subjects with a mean age of 14.7 years had REE, organ and tissue mass, body cell mass, and fat-free mass (FFM) measured by indirect calorimetry, whole-body MRI, whole-body 40K counting and dual-energy X-ray absorptiometry, respectively. The predicted REE (REEp; mean ± SD, 1,487 ± 238 kcal/day) was correlated with the measured REE (REEm, 1,606 ± 237 kcal/day, r = 0.76, P < 0.001). The mean difference (118 ± 165 kcal/day) between REEm and REEp was significant (P = 0.0047), accounting for 7.3% of REEm for the entire group. The present study, the first of its type in adolescents, does not support the applicability of the organ,tissue-based REE prediction model during rapid adolescent growth. A modified general REE prediction model is thus suggested which may account for the higher REE/FFM ratio observed in adolescents. Am. J. Hum. Biol. 2010. © 2010 Wiley-Liss, Inc. [source] |