Rate-limiting Step (rate-limiting + step)

Distribution by Scientific Domains
Distribution within Chemistry


Selected Abstracts


The motility of glioblastoma tumour cells is modulated by intracellular cofilin expression in a concentration-dependent manner

CYTOSKELETON, Issue 3 2005
Celestial T. Yap
Abstract The invasive behaviour of tumour cells has been attributed in part to dysregulated cell motility. Members of the ADF/Cofilin family of actin-binding proteins are known to increase microfilament dynamics by increasing the rate at which actin monomers leave the pointed end of the filament and by a filament-severing activity. As depolymerisation is a rate-limiting step in actin dynamics, ADF/Cofilins are suspected to facilitate the motility of cells. To test this, we investigated the influence of cofilin on tumour motility by transient and stably overexpressing cofilin in the human glioblastoma cell line, U373 MG. Several different methods were used to ascertain the level of cofilin in overexpressing clones and this was correlated with their rate of random locomotion. A biphasic relationship between cofilin level and locomotory rate was found. Clones that displayed a moderate amount of overproduction of cofilin were found to have increased rates of locomotion approximately linear to the overproduction of cofilin up to an optimal cofilin level of about 4.5 times that of wild type cells at which the cells were almost twice as fast. However, clones producing more than this optimal amount were found to locomote at progressively reduced speeds. Cells that overexpress cofilin have reduced stress fibres compared to control cells showing that the excess cofilin affects the actin cytoskeleton. We conclude that overexpression of cofilin enhances the motility of glioblastoma tumour cells in a concentration-dependent fashion, which is likely to contribute to their invasiveness. Cell Motil. Cytoskeleton 60:153,165, 2005. © 2005 Wiley-Liss, Inc. [source]


Bone morphogenetic protein-7 enhances dendritic growth and receptivity to innervation in cultured hippocampal neurons

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 1 2000
G. S. Withers
Abstract Members of the bone morphogenetic protein (BMP) family of growth factors are present in the central nervous system during development and throughout life. They are known to play an important regulatory role in cell differentiation, but their function in postmitotic telencephalic neurons has not been investigated. To address this question, we examined cultured hippocampal neurons following treatment with bone morphogenetic protein-7 (BMP-7, also referred to as osteogenic protein-1). When added at the time of plating, BMP-7 markedly stimulated the rate of dendritic development. Within 1 day, the dendritic length of BMP-7-treated neurons was more than twice that of controls. By three days the dendritic arbors of BMP-7-treated neurons had attained a level of branching similar to that of 2-week-old neurons cultured under standard conditions. Several findings indicate that BMP-7 selectively enhances dendritic development. While dendritic length was significantly increased in BMP-7-treated neurons, the length of the axon was not. In addition, the mRNA encoding the dendritic protein MAP2 was significantly increased by BMP-7 treatment, but the mRNA for tubulin was not. Finally, BMP-7 did not enhance cell survival. Because dendritic maturation is a rate-limiting step in synapse formation in hippocampal cultures, we examined whether BMP-7 accelerated the rate at which neurons became receptive to innervation. Using two separate experimental paradigms, we found that the rate of synapse formation (assessed by counting synapsin I-positive presynaptic vesicle clusters) was increased significantly in neurons that had been exposed previously to BMP-7. Because BMP-7 and related BMPs are expressed in the hippocampus in situ, these factors may play a role in regulating dendritic branching and synapse formation in both development and plasticity. [source]


Nucleophilic Reactivities of Pyrroles,

EUROPEAN JOURNAL OF ORGANIC CHEMISTRY, Issue 14 2008
Tobias A. Nigst
Abstract The second-order rate constants of the reactions of alkyl-substituted pyrroles with a series of benzhydrylium ions were determined in acetonitrile, and the reaction products were fully characterized by NMR spectroscopy and mass spectrometry. The formation of the , adducts is the rate-limiting step of these reactions. Because the second-order rate constants correlate linearly with the electrophilicity parameters of the benzhydrylium ions, the determination of the nucleophilicity parameters N and s according to the linear free energy relationship log k2 (20 °C) = s(N + E) was achieved. With these findings, a direct comparison of the nucleophilic reactivities of these ,-excessive heterocycles with other nucleophiles became possible, and the pyrroles were integrated into the comprehensive scale of nucleophilicity, covering a range of 8,9 orders of magnitude from N -(triisopropylsilyl)pyrrole (N = 3.12), the weakest nucleophile of this series, to kryptopyrrole (3-ethyl-2,4-dimethylpyrrole, N = 11.63). Thus, highly reactive pyrroles show similar nucleophilic reactivities as enamines, whereas those of less-reactive pyrroles are comparable to allylsilanes or indoles. (© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2008) [source]


Lipopolyamine treatment increases the efficacy of intoxication with saporin and an anticancer saporin conjugate

FEBS JOURNAL, Issue 18 2007
Sandra E. Geden
Saporin is a type I ribosome-inactivating protein that is often appended with a cell-binding domain to specifically target and kill cancer cells. Urokinase plasminogen activator (uPA)-saporin, for example, is an anticancer toxin that consists of a chemical conjugate between the human uPA and native saporin. Both saporin and uPA-saporin enter the target cell by endocytosis and must then escape the endomembrane system to reach the cytosolic ribosomes. The latter process may represent a rate-limiting step for intoxication and would therefore directly affect toxin potency. In the present study, we document two treatments (shock with dimethylsulfoxide and lipopolyamine coadministration) that generate substantial cellular sensitization to saporin/uPA-saporin. With the use of lysosome-endosome X (LEX)1 and LEX2 mutant cell lines, an endosomal trafficking step preceding cargo delivery to the late endosomes was identified as a major site for the dimethylsulfoxide-facilitated entry of saporin into the cytosol. Dimethylsulfoxide and lipopolyamines are known to disrupt the integrity of endosome membranes, so these reagents could facilitate the rapid movement of toxin from permeabilized endosomes to the cytosol. However, the same pattern of toxin sensitization was not observed for dimethylsulfoxide- or lipopolyamine-treated cells exposed to diphtheria toxin, ricin, or the catalytic A chain of ricin. The sensitization effects were thus specific for saporin, suggesting a novel mechanism of saporin translocation by endosome disruption. Lipopolyamines have been developed as in vivo gene therapy vectors; thus, lipopolyamine coadministration with uPA-saporin or other saporin conjugates could represent a new approach for anticancer toxin treatments. [source]


Permeation of tetracyclines through membranes of liposomes and Escherichia coli

FEBS JOURNAL, Issue 2 2000
Albrecht Sigler
Uptake of tetracycline (tc), 2-tetracyclinonitrile (CN-tc), and 9-(N,N -dimethylglycylamido)-6-demethyl-6-deoxytetracycline (DMG-DMDOT) by liposomes containing Tet repressor (TetR) and by Escherichia coli cells overexpressing TetR was examined. TetR specifically binds to tetracyclines, enhances their fluorescence and thereby allows selective detection of tetracyclines that have crossed the membranes. Analysis of the diffusion of tc and DMG-DMDOT into liposomes yielded permeation coefficients of (2.4 ± 0.6) × 10,9 cm·s,1 and (3.3 ± 0.8) × 10,9 cm·s,1, respectively. Similar coefficients were obtained for uptake of these tetracyclines by E. coli, indicating that diffusion through the cytoplasmic membrane is the rate-limiting step. The permeation coefficients translate into half-equilibration times of approximately 35 ± 15 min and explain how efflux pumps can mediate resistance against tetracyclines. Furthermore, diffusion of CN-tc into liposomes was at least 400-fold slower than that of tc, indicating that the carboxamide group at position C2 is required for efficient permeation of tc through lipid membranes and thereby explaining the lack of antibiotic activity of CN-tc. [source]


Phospholipase D1 is required for efficient mating projection formation in Saccharomyces cerevisiae

FEMS YEAST RESEARCH, Issue 3 2001
Michelle L. Hairfield
Abstract Phospholipase D1 (PLD1) is an important enzyme involved in lipid signal transduction in eukaryotes. A role for PLD1 in signaling in Saccharomyces cerevisiae was examined. Pheromone response in yeast is controlled by a well-characterized protein kinase cascade. Loss of PLD1 activity was found to impair pheromone-induced changes in cellular morphology that result in formation of mating projections. The rate at which projections appeared following pheromone treatment was delayed, suggesting that PLD1 facilitates the execution of a rate-limiting step in morphogenesis. Mutants were found to be less sensitive to pheromone, again arguing that PLD1 is acting at a rate-limiting step. The fact that morphogenesis is most dramatically affected indicates that PLD1 functions primarily in the morphogenic branch of the pheromone response pathway. [source]


Enhanced exoenzyme activities in sediments in the presence of deposit-feeding Chironomus riparius larvae

FRESHWATER BIOLOGY, Issue 9 2007
PETER STIEFArticle first published online: 10 JUN 200
Summary 1. The combined effects of deposit-feeding, bioturbation and bioirrigation by benthic macrofauna on the enzymatic hydrolysis of organic matter were studied in microcosms. Chironomus riparius larvae (Insecta, Diptera) served as model macrofauna and stinging nettle leaves (Urtica dioica) were used as a detrital food source. 2. In the upper 10 mm of the sediment (the habitat of C. riparius larvae), the activities of several exoenzymes, the contents of several fractions of particulate organic matter (POM), and the concentrations of dissolved oxidants (O2, NO) were measured on a small scale. Fluorescent particles (luminophores) were used to quantify the vertical redistribution of particles within the same layer. 3. In control sediment, the addition of detrital food enhanced exoenzyme activities in the 0,2 mm layer only. In the presence of C. riparius larvae, exoenzyme activities increased to 10 mm depth. Further, the content of POM in the 0,2 mm layer was lower in the presence than in the absence of larvae, suggesting ingestion and subduction of the added detritus. After prolonged incubation without further food addition, exoenzyme activities returned close to background values in both treatments, whereas the vertical distribution of POM remained unchanged. 4. The overall penetration depth of O2 and NO into the sediment was greater in the presence than the absence of C. riparius, the differences being more pronounced after prolonged incubation. Locally high O2 and NO concentrations due to bioirrigation by C. riparius were measured deep in the sediment. Net downward transport of particles was observed only in the presence of C. riparius larvae and only at the beginning of the incubation. 5. I conclude that deposit-feeding and bioturbation by macrofauna can quickly remove freshly deposited POM from the sediment surface and transfer it to less oxygenated sites (i.e. animal guts and deep sediment layers). Bioirrigation also increases the availability of oxidants deep in the sediment. The oscillation of oxidant supply to POM particles by ingestion,egestion, burial and re-burial, and the intermittent bioirrigation of subsurface sediment, is probably the cause of the increased rate of organic matter hydrolysis, the rate-limiting step in mineralization. [source]


Phosphorylation status of pyruvate dehydrogenase distinguishes metabolic phenotypes of cultured rat brain astrocytes and neurons

GLIA, Issue 10 2010
Nader D. Halim
Abstract Glucose metabolism in nervous tissue has been proposed to occur in a compartmentalized manner with astrocytes contributing largely to glycolysis and neurons being the primary site of glucose oxidation. However, mammalian astrocytes and neurons both contain mitochondria, and it remains unclear why in culture neurons oxidize glucose, lactate, and pyruvate to a much larger extent than astrocytes. The objective of this study was to determine whether pyruvate metabolism is differentially regulated in cultured neurons versus astrocytes. Expression of all components of the pyruvate dehydrogenase complex (PDC), the rate-limiting step for pyruvate entry into the Krebs cycle, was determined in cultured astrocytes and neurons. In addition, regulation of PDC enzymatic activity in the two cell types via protein phosphorylation was examined. We show that all components of the PDC are expressed in both cell types in culture, but that PDC activity is kept strongly inhibited in astrocytes through phosphorylation of the pyruvate dehydrogenase alpha subunit (PDH,). In contrast, neuronal PDC operates close to maximal levels with much lower levels of phosphorlyated PDH,. Dephosphorylation of astrocytic PDH, restores PDC activity and lowers lactate production. Our findings suggest that the glucose metabolism of astrocytes and neurons may be far more flexible than previously believed. © 2010 Wiley-Liss, Inc. [source]


Biliverdin therapy protects rat livers from ischemia and reperfusion injury

HEPATOLOGY, Issue 6 2004
Constantino Fondevila
Heme oxygenase (HO-1) provides a cellular defense mechanism during oxidative stress and catalyzes the rate-limiting step in heme metabolism that produces biliverdin (BV). The role of BV and its potential use in preventing ischemia/reperfusion injury (IRI) had never been studied. This study was designed to explore putative cytoprotective functions of BV during hepatic IRI in rat liver models of ex vivo perfusion and orthotopic liver transplantation (OLT) after prolonged periods of cold ischemia. In an ex vivo hepatic IRI model, adjunctive BV improved portal venous blood flow, increased bile production, and decreased hepatocellular damage. These findings were correlated with amelioration of histological features of IRI, as assessed by Suzuki's criteria. Following cold ischemia and syngeneic OLT, BV therapy extended animal survival from 50% in untreated controls to 90% to 100%. This effect correlated with improved liver function and preserved hepatic architecture. Additionally, BV adjuvant after OLT decreased endothelial expression of cellular adhesion molecules (P-selectin and intracellular adhesion molecule 1), and decreased the extent of infiltration by neutrophils and inflammatory macrophages. BV also inhibited expression of inducible nitric oxide synthase and proinflammatory cytokines (interleukin 1,, tumor necrosis factor ,, and interleukin 6) in OLTs. Finally, BV therapy promoted an increased expression of antiapoptotic molecules independently of HO-1 expression, consistent with BV being an important mediator through which HO-1 prevents cell death. In conclusion, this study documents and dissects potent cytoprotective effects of BV in well-established rat models of hepatic IRI. Our results provide the rationale for a novel therapeutic approach using BV to maximize the function and thus the availability of donor organs. (HEPATOLOGY 2004;40:1333,1341.) [source]


Cholesterol-promoted synaptogenesis requires the conversion of cholesterol to estradiol in the hippocampus

HIPPOCAMPUS, Issue 8 2009
Lars Fester
Abstract Cholesterol of glial origin promotes synaptogenesis (Mauch et al., (2001) Science 294:1354,1357). Because in the hippocampus local estradiol synthesis is essential for synaptogenesis, we addressed the question of whether cholesterol-promoted synapse formation results from the function of cholesterol as a precursor of estradiol synthesis in this brain area. To this end, we treated hippocampal cultures with cholesterol, estradiol, or with letrozole, a potent aromatase inhibitor. Cholesterol increased neuronal estradiol release into the medium, the number of spine synapses in hippocampal slice cultures, and immunoreactivity of synaptic proteins in dispersed cultures. Simultaneous application of cholesterol and letrozole or blockade of estrogen receptors by ICI 182 780 abolished cholesterol-induced synapse formation. As a further approach, we inhibited the access of cholesterol to the first enzyme of steroidogenesis by knock-down of steroidogenic acute regulatory protein, the rate-limiting step in steroidogenesis. A rescue of reduced synaptic protein expression in transfected cells was achieved by estradiol but not by cholesterol. Our data indicate that in the hippocampus cholesterol-promoted synapse formation requires the conversion of cholesterol to estradiol. © 2009 Wiley-Liss, Inc. [source]


Prioritizing regions of candidate genes for efficient mutation screening,

HUMAN MUTATION, Issue 2 2006
Terry A. Braun
Abstract The availability of the complete sequence of the human genome has dramatically facilitated the search for disease-causing sequence variations. In fact, the rate-limiting step has shifted from the discovery and characterization of candidate genes to the actual screening of human populations and the subsequent interpretation of observed variations. In this study we tested the hypothesis that some segments of candidate genes are more likely than others to contain disease-causing variations and that these segments can be predicted bioinformatically. A bioinformatic technique, prioritization of annotated regions (PAR), was developed to predict the likelihood that a specific coding region of a gene will harbor a disease-causing mutation based on conserved protein functional domains and protein secondary structures. This method was evaluated by using it to analyze 710 genes that collectively harbor 4,498 previously identified mutations. Nearly 50% of the genes were recognized as disease-associated after screening only 9% of the complete coding sequence. The PAR technique identified 90% of the genes as containing at least one mutation, with less than 40% of the screening resources that traditional approaches would require. These results suggest that prioritization strategies such as PAR can accelerate disease-gene identification through more efficient use of screening resources. Hum Mutat 27(2), 195,200, 2006. © 2006 Wiley-Liss, Inc. [source]


Past expectations, present disappointments, future hopes or psychopathology as the rate-limiting step of progress in psychopharmacology

HUMAN PSYCHOPHARMACOLOGY: CLINICAL AND EXPERIMENTAL, Issue 1 2001
H. M Van Praag
Abstract In 1974 I published a paper in which we predicted that biological depression research would lead to new, innovative antidepressants, to more sophisticated prescription of antidepressants and ultimately to ,functional psychopharmacology'. These expectations have not materialized. The reasons why are discussed and the conclusion is reached that there are reasons to believe that, belated, they will come true. I consider it no bold venture to uphold them. Copyright © 2001 John Wiley & sons, Ltd. [source]


Indoleamine 2,3-dioxygenase in T-cell tolerance and tumoral immune escape

IMMUNOLOGICAL REVIEWS, Issue 1 2008
Jessica B. Katz
Summary: Indoleamine 2, 3-dioxygenase (IDO) degrades the essential amino acid tryptophan in mammals, catalyzing the initial and rate-limiting step in the de novo biosynthesis nicotinamide adenine dinucleotide (NAD). Broad evidence implicates IDO and the tryptophan catabolic pathway in generation of immune tolerance to foreign antigens in tissue microenvironments. In particular, recent findings have established that IDO is overexpressed in both tumor cells and antigen-presenting cells in tumor-draining lymph nodes, where it promotes the establishment of peripheral immune tolerance to tumor antigens. In the normal physiologic state, IDO is important in creating an environment that limits damage to tissues due to an overactive immune system. However, by fostering immune suppression, IDO can facilitate the survival and growth of tumor cells expressing unique antigens that would be recognized normally as foreign. In preclinical studies, small-molecule inhibitors of IDO can reverse this mechanism of immunosuppression, complementing classical cytotoxic cancer chemotherapeutic agents' ability to trigger regression of treatment-resistant tumors. These results have encouraged the clinical translation of IDO inhibitors, the first of which entered phase I clinical trials in the fall of 2007. In this article, we survey the work defining IDO as an important mediator of peripheral tolerance, review evidence of IDO dysregulation in cancer cells, and provide an overview of the development of IDO inhibitors as a new immunoregulatory treatment modality for clinical trials. [source]


Role of dopachrome conversion enzyme in the melanization of filarial worms in mosquitoes

INSECT MOLECULAR BIOLOGY, Issue 6 2005
C.-Y. Huang
Abstract Melanization is an effective defence reaction of mosquito hosts against invading parasites. In mosquitoes, the biosynthesis of melanin is initiated by the hydroxylation of tyrosine to DOPA by phenoloxidase (PO). DOPA is a branch point of the melanization reaction; it may be oxidized to dopaquinone by PO or be decarboxylated to dopamine by dopa decarboxylase. Further oxidation of dopaquinone by PO produces dopachrome. Dopachrome is then converted to 5, 6-dihydroxyindole by dopachrome conversion enzyme (DCE) to produce melanin. The conversion of dopachrome is a rate-limiting step of the melanization reaction, and the presence of PO and DCE significantly accelerates melanization reactions. In this study, a cDNA encoding DCE was cloned from the mosquito Armigeres subalbatus. Real-time PCR analysis revealed increased transcripts from haemocytes in microfilariae (mf)-inoculated mosquitoes. Gene silencing using double-stranded RNA was used to elucidate the role of DCE in the melanization reaction of parasites in Ar. subalbatus. The levels of both DCE transcripts and protein in gene knockdown mosquitoes were dramatically reduced. Compared with controls, the degree of melanization of mf in DCE-knockdown mosquitoes was significantly decreased. These results suggest that DCE is a critical enzyme that is required for effective melanization immune responses. [source]


Oxidation of diclofenac sodium by diperiodatoargantate(III) in aqueous alkaline medium and its determination in urine and blood by kinetic methods

INTERNATIONAL JOURNAL OF CHEMICAL KINETICS, Issue 6 2010
P. N. Naik
The kinetics and oxidation of diclofenac sodium (DFS) by diperiodatoargentate(III) (DPA) in alkaline medium at 298 K and at a constant ionic strength of 0.60 mol dm,3 were studied spectrophotometrically. The oxidation products were [2-(2,6-dicloro-phynylamino)-phenyl]-methenol and Ag(I), identified by LC-ESI-MS and IR spectral studies. The reaction between DFS and DPA in alkaline medium exhibits 1:1 stoichiometry. The reaction is first order in [DPA] and has a less than unit order dependence each in [DFS] and [alkali]. Increasing concentrations of IO,4 retard the reaction. The active species of DPA proposed to be monoperiodatoargentate(III), and a mechanism is suggested. The rate constants involved in the different steps of the mechanism were determined and are discussed. The activation parameters with respect to a rate-limiting step of the mechanism were determined. The thermodynamic quantities were also determined. Using the oxidation of DFS by DPA, DFS was analyzed by kinetic methods in urine and blood sample. The proposed method enables DFS analysis in the range from 5.0 × 10,5 to 5.0 × 10,3 mol dm,3. © 2010 Wiley Periodicals, Inc. Int J Chem Kinet 42: 336,346, 2010 [source]


Studies on the oxygen atom transfer reactions of peroxomonosulfate: Catalytic effect of hemiacetal

INTERNATIONAL JOURNAL OF CHEMICAL KINETICS, Issue 10 2009
S. Shailaja
The reaction of peroxomonosulfate (PMS) with glycolic acid (GLYCA), an alpha hydroxy acid, in the presence of Ni(II) ions and formaldehyde was studied in the pH range 4.05,5.89 and at 31°C and 38°C. When formaldehyde and Ni(II) ions concentrations are ,5.0 × 10,4 M to 10.0 × 10,4 M, the reaction is second order in PMS concentration. The rate is catalyzed by formaldehyde, and the observed rate equation is (,d[PMS])/dt = (k,2[HCHO][Ni(II)][PMS]2)/{[H+](1+K2[GLYCA])}. The number of PMS decomposed for each mole of formaldehyde (turnover number) is 5,10, and the major reaction product is oxygen gas. The first step of the reaction mechanism is the formation of hemiacetal by the interaction of HCHO with the hydroxyl group of nickel glycolate. The peroxomonosulfate intermediate of the Ni-hemiacetal reacts with another molecule of PMS in the rate-limiting step to give the product. This reaction is similar to the thermal decomposition of PMS catalyzed by Ni(II) ions. © 2009 Wiley Periodicals, Inc. Int J Chem Kinet 41: 642,649, 2009 [source]


The role of Ni(II) in the oxidation of glycylglycine dipeptide by peroxomonosulfatex

INTERNATIONAL JOURNAL OF CHEMICAL KINETICS, Issue 1 2009
P. Thendral
The kinetics of oxidation of the dipeptide glycylglycine by peroxomonosulfate (PMS) was studied in the pH range of 3.42,5.89. The rate is first order in [PMS], glycylglycine concentration, and inverse first order in [H+]. The kinetic data suggest that SO2,5reacts, with glycylglycine, faster than HSO,5 by five orders of magnitude. The observed kinetics can be explained as due to the formation of an intermediate by the nucleophilic interaction of peroxide with the terminal protonated amine of glycylglycine, which then decomposes in the rate-limiting step to the product aldehyde. The thermodynamic parameters are evaluated. The reaction is catalyzed by Ni(II) ions only when pH , 4.63, and above this pH the rate is zero order with respect to [Ni(II)]. Perusal of the enhanced rate constant values suggests that the Ni-peroxide intermediate also reacts with glycylglycine. The Ni-dipeptide complex is not oxidized by PMS, and this complex in fact inhibits the formation of Ni-peroxide intermediate. © 2008 Wiley Periodicals, Inc. Int J Chem Kinet 41: 18,26, 2009 [source]


Nickel peroxide: A more probable intermediate in the Ni(II)-catalyzed decomposition of peroxomonosulfate

INTERNATIONAL JOURNAL OF CHEMICAL KINETICS, Issue 6 2007
P. Thendral
The Ni(II) ion catalyzed thermal decomposition of peroxomonosulfate (PMS) was studied in the pH range 3.42,5.89. The rate is first order in [PMS] and Ni(II) ion concentrations. At pH greater than or equal to 5.23, the reaction becomes zero order in [PMS] and this changeover in the order of the reaction occurs at a higher concentration of nickel ions. The first-order kinetics in PMS can be explained as a rate-limiting step and is the transformation of nickel peroxomonosulfate into nickel peroxide. This peroxide intermediate reacts rapidly with another PMS to give oxygen and Ni(II). The formation of nickel peroxide is associated with a small negative or nearly zero entropy of activation. The zero-order kinetics in [PMS] can be explained by the fact that the hydrolysis of aquated nickel(II) ions into hydroxocompounds is the rate-limiting step. The turnover number is 2 at pH 3.42 and increases with pH. © 2007 Wiley Periodicals, Inc. Int J Chem Kinet 39: 320,237, 2007 [source]


Formation and decay of the ABTS derived radical cation: A comparison of different preparation procedures

INTERNATIONAL JOURNAL OF CHEMICAL KINETICS, Issue 12 2002
Carola Henriquez
Bleaching of a preformed solution of the blue-green radical cation 2,2,-azinobis (3-ethylbenzothizoline-6-sulfonic acid) (ABTS+·) has been extensively used to evaluate the antioxidant capacity of complex mixtures and individual compounds. The reaction of the preformed radical with free-radical scavengers can be easily monitored by following the decay of the sample absorbance at 734 nm. The ABTS radical cation can be prepared employing different oxidants. Results obtained using MnO2 as oxidant show that the presence of manganese ions increases the rate of [ABTS]+· autobleaching in a concentration-dependent manner. The radicals can also be obtained by oxidizing ABTS with 2,2, -azobis(2-amidinopropane)hydrochloride (AAPH) or peroxodisulfate (PDS). The oxidation by AAPH takes place with a large activation energy and a low reaction order in ABTS. The data support a mechanism in which the homolysis of AAPH is the rate-limiting step, followed by the reaction of ABTS with the peroxyl radicals produced after the azocompound thermolysis. On the other hand, the low activation energy measured employing PDS, as well as the kinetic law, are compatible with the occurrence of a bimolecular reaction between the oxidant and ABTS. Regarding the use of ABTS-based methodologies for the evaluation of free radical scavengers, radical cations obtained employing AAPH as oxidant can be used only at low temperatures, conditions where further decomposition of the remaining AAPH is minimized. The best results are obtained with ABTS derived radicals generated in the reaction of PDS with an ABTS/PDS concentration ratio equal (or higher) to two. However, even with radicals prepared by this procedure, stoichiometric coefficients considerably larger than two are obtained for the consumption of the radical cation employing tryptophane or p -terbutylphenol as reductants. This casts doubts on the use of ABTS-based procedures for the estimation of antioxidant capacities. © 2002 Wiley Periodicals, Inc. Int J Chem Kinet 34: 659,665, 2002 [source]


(,6 -Arene)ruthenium(N-heterocyclic carbene) Complexes for the Chelation-Assisted Arylation and Deuteration of Arylpyridines: Catalytic Studies and Mechanistic Insights

ADVANCED SYNTHESIS & CATALYSIS (PREVIOUSLY: JOURNAL FUER PRAKTISCHE CHEMIE), Issue 7 2010
Amparo Prades
Abstract A series of (,6 -arene)ruthenium complexes have been tested in the arylation of arylpyridines. One (,6 - p -cymene)ruthenium(N-heterocyclic carbene) complex (labelled as 1 in the text) was found to be the most effective, being capable of arylating a wide set of substantially different arylpyridines. Complex 1 is also able to promote the regioselective deuteration of a series of arylated N-heterocycles, via a nitrogen-directed mechanism. Two of the deuterated amines were used to measure the kinetic isotope effect (KIE) in the arylation process. The detection of an inverse KIE, together with the observation that the CH activation process does not require the addition of a base, suggest that the rate-limiting step in the arylation process may be different to that of previously reported studies. [source]


Proton Transfer on the Molecular Surface of Proteins and Model Systems

ISRAEL JOURNAL OF CHEMISTRY, Issue 2 2009
Ran Friedman
Proton transfer (PT) reactions take place on the molecular surface of proteins, membranes, ionic polymers, and other molecules. The rates of the reactions can be followed experimentally, while the atomistic details can be elucidated by molecular modeling. This manuscript gives a brief overview of the use of computer simulations and molecular modeling, in conjuction with experiments, to study PT reactions on the surface of solvated molecules. An integrative approach is discussed, where molecular dynamics simulations are performed with a protein, and quantum-mechanics-based calculations are performed on a small molecule. The simulation results allow the identification of the necessary conditions that yield PT reactions on the molecular surface. The reactions are efficient when they involve a donor and acceptor located a few Å apart and under the influence of a negative electrostatic field. In proton-pumping proteins, it is possible to identify such conditions a priori and locate proton-attracting antenna domains without the need to mutate each potential donor and acceptor. Based on density functional theory calculations, the arrangement of water molecules that interconnect the donor and acceptor moieties is suggested as the rate-limiting step for proton transfer on the molecular surface. [source]


Site-specific proteolysis of cyclooxygenase-2: A putative step in inflammatory prostaglandin E2 biosynthesis

JOURNAL OF CELLULAR BIOCHEMISTRY, Issue 2 2007
Arturo Mancini
Abstract Cyclooxygenase-2 (COX-2) catalyzes the rate-limiting step in inflammatory prostanoid biosynthesis. Transcriptional, post-transcriptional, and post-translational covalent modifications have been defined as important levels of regulation for COX-2 gene expression. Here, we describe a novel regulatory mechanism in primary human cells involving regulated, sequence-specific proteolysis of COX-2 that correlates with its catalytic activity and ultimately, the biosynthesis of prostaglandin E2 (PGE2). Proinflammatory cytokines induced COX-2 expression and its proteolysis into stable immunoreactive fragments of 66, 42,44, 34,36, and 28 kDa. Increased COX-2 activity (PGE2 release) was observed coincident with the timing and degree of COX-2 proteolysis with correlation analysis confirming a linear relationship (R2,=,0.941). Inhibition of induced COX-2 activity with non-steroidal anti-inflammatory drugs (NSAIDs) and COX-2 selective inhibitors also abrogated cleavage. To determine if NSAID inhibition of proteolysis was related to drug-binding-induced conformational changes in COX-2, we assayed COX-inactive NSAID derivatives that fail to bind COX-2. Interestingly, these compounds suppressed COX-2 activity and cleavage in a correlated manner, thus suggesting that the observed NSAID-induced inhibition of COX-2 cleavage occurred through COX-independent mechanisms, presumably through the inhibition of proteases involved in COX-2 processing. Corroborating this observation, COX-2 cleavage and activity were mutually suppressed by calpain/cathepsin protease inhibitors. Our data suggest that the nascent intracellular form of COX-2 may undergo limited proteolysis to attain full catalytic capacity. J. Cell. Biochem. 101: 425,441, 2007. © 2006 Wiley-Liss, Inc. [source]


Temperature dependency of granule characteristics and kinetic behavior in UASB reactors

JOURNAL OF CHEMICAL TECHNOLOGY & BIOTECHNOLOGY, Issue 8 2004
Hsin-Hsien Chou
Abstract When an inhibitory substrate, phenol, was treated under mesophilic conditions (25, 30, 35, and 40 °C), the upflow anaerobic sludge bed (UASB) reactors at 30 °C resulted in the greatest amount of biomass and the largest granule size, while the UASB reactors at 25 °C resulted in the smallest granule size and the greatest amount of wash-out of sludge. The granule size tended to be negatively correlated with the amount of wash-out of sludge. With an increase in temperature, the kinetic constant k for anaerobic phenol degradation increased and the half saturation constant (Ks) decreased. The mass fraction of methanogens (f) increased with increasing operational temperature in the UASB reactors and the activation energy (Ea) for acetate methanogenesis was larger than that for phenol acidogenesis in the batch reactors, indicating that the operational temperature imposes a more influential effect on methanogens than on acidogens. From the results of the activity of acidogens and methanogens (expressed in specific COD utilization rate), the rate-limiting step is phenol acidogenesis. Copyright © 2004 Society of Chemical Industry [source]


Molecular dynamics simulations of the detoxification of paraoxon catalyzed by phosphotriesterase

JOURNAL OF COMPUTATIONAL CHEMISTRY, Issue 15 2009
Xin Zhang
Abstract Combined QM(PM3)/MM molecular dynamics simulations together with QM(DFT)/MM optimizations for key configurations have been performed to elucidate the enzymatic catalysis mechanism on the detoxification of paraoxon by phosphotriesterase (PTE). In the simulations, the PM3 parameters for the phosphorous atom were reoptimized. The equilibrated configuration of the enzyme/substrate complex showed that paraoxon can strongly bind to the more solvent-exposed metal ion Zn,, but the free energy profile along the binding path demonstrated that the binding is thermodynamically unfavorable. This explains why the crystal structures of PTE with substrate analogues often exhibit long distances between the phosphoral oxygen and Zn,. The subsequent SN2 reaction plays the key role in the whole process, but controversies exist over the identity of the nucleophilic species, which could be either a hydroxide ion terminally coordinated to Zn, or the ,-hydroxo bridge between the ,- and ,-metals. Our simulations supported the latter and showed that the rate-limiting step is the distortion of the bound paraoxon to approach the bridging hydroxide. After this preparation step, the bridging hydroxide ion attacks the phosphorous center and replaces the diethyl phosphate with a low barrier. Thus, a plausible way to engineer PTE with enhanced catalytic activity is to stabilize the deformed paraoxon. Conformational analyses indicate that Trp131 is the closest residue to the phosphoryl oxygen, and mutations to Arg or Gln or even Lys, which can shorten the hydrogen bond distance with the phosphoryl oxygen, could potentially lead to a mutant with enhanced activity for the detoxification of organophosphates. © 2009 Wiley Periodicals, Inc. J Comput Chem, 2009 [source]


Effects of entropy on the gas-phase pyrolysis of ethyl N,N -dimethylcarbamate

JOURNAL OF COMPUTATIONAL CHEMISTRY, Issue 3 2007
Chang K. Kim
Abstract In this study, we examined the gas-phase pyrolysis of ethyl N,N -dimethylcarbamate theoretically at various theoretical levels. The reaction consists of a two-step mechanism, with N,N -dimethylcarbamic acid and ethylene as reaction intermediates. In the first step, the reaction proceeds via a six-membered cyclic transition state (TS), which is more favorable than that via a four-membered cyclic TS. Here, the contribution of entropy to the overall potential energy surface was found to play an important role in determining the rate-limiting step, which was found to be the second step when viewed in terms of the enthalpy of activation (,H,), but the first step when entropy changes (,T,S,) were considered. These results are consistent with experimental findings. Moreover, the experimental activation entropy can be reproduced by using the hindered rotor approximation, which converts some low vibration frequencies that correspond to internal rotational modes into hindered rotors. © 2006 Wiley Periodicals, Inc. J Comput Chem 28: 625,631, 2007 [source]


A New Farnesyl Diphosphate Synthase Gene from Taxus media Rehder: Cloning, Characterization and Functional Complementation

JOURNAL OF INTEGRATIVE PLANT BIOLOGY, Issue 6 2006
Zhi-Hua Liao
Abstract Farnesyl diphosphate synthase (FPS; EC 2.5.1.10) catalyzes the production of 15-carbon farnesyl diphosphate which is a branch-point intermediate for many terpenoids. This reaction is considered to be a rate-limiting step in terpenoid biosynthesis. Here we report for the first time the cloning of a new full-length cDNA encoding farnesyl diphosphate synthase from a gymnosperm plant species, Taxus media Rehder, designated as TmFPS1. The full-length cDNA of TmFPS1 (GenBank accession number: AY461811) was 1 464 bp with a 1 056-bp open reading frame encoding a 351-amino acid polypeptide with a calculated molecular weight of 40.3 kDa and a theoretical pI of 5.07. Bioinformatic analysis revealed that TmFPS1 contained all five conserved domains of prenyltransferases, and showed homology to other FPSs of plant origin. Phylogenetic analysis showed that farnesyl diphosphate synthases can be divided into two groups: one of prokaryotic origin and the other of eukaryotic origin. TmFPS1 was grouped with FPSs of plant origin. Homology-based structural modeling showed that TmFPS1 had the typical spatial structure of FPS, whose most prominent structural feature is the arrangement of 13 core helices around a large central cavity in which the catalytic reaction takes place. Our bioinformatic analysis strongly suggests that TmFPS1 is a functional gene. Southern blot analysis revealed that TmFPS1 belongs to a small FPS gene family in T. media. Northern blot analysis indicated that TmFPS1 is expressed in all tested tissues, including the needles, stems and roots of T. media. Subsequently, functional complementation with TmFPS1 in a FPS-deficient mutant yeast demonstrated that TmFPS1 did encode farnesyl diphosphate synthase, which rescued the yeast mutant. This study will be helpful in future investigations aiming at understanding the detailed role of FPS in terpenoid biosynthesis flux control at the molecular genetic level. (Managing editor: Wei Wang) [source]


Plagioclase replacement textures in partially eclogitised gabbros from the Sanddal mafic-ultramafic complex, Greenland Caledonides

JOURNAL OF METAMORPHIC GEOLOGY, Issue 5 2001
H. M. Lang
Abstract The Sanddal mafic-ultramafic complex (SMUK) is a cluster of variably eclogitised mafic and ultramafic bodies that comprise the westernmost known eclogite facies locality in the North-East Greenland eclogite province (NEGEP). Although there are no true eclogites in the SMUK, we interpret three distinct textural types of plagioclase replacement to record sequential stages in adjustment of SMUK olivine gabbro-norites to eclogite facies conditions. The earliest stage, in which plagioclase was replaced by omphacite/spinel symplectite before nucleation of garnet (Type 1A & 1B) has not previously been described. Documentation of this texture provides clear evidence that, at least in some cases, garnet nucleation is delayed relative to nucleation of omphacite and is a rate-limiting step for eclogitisation. Type 1C domains were produced by scattered nucleation of garnet in the same sample. In Type 2 domains, plagioclase was replaced by a layered corona with an outer layer of garnet, an inner layer of omphacite and an interior of inclusion-rich plagioclase. In Type 3 domains, the omphacite layer was overgrown by the garnet rim, and omphacite is preserved only as inclusions in garnet. In more coarse grained leucogabbros, recrystallization was more complete, plagioclase replacement textures were less localised, and could not be divided into distinct stages. Plagioclase replacement in SMUK samples was not isochemical, and required diffusion of at least Mg and Fe from replacement of mafic phases in the surroundings. Strong compositional gradients in garnet reflect disequilibrium and were controlled by the different diffusion rates of Mg/Fe and Ca, different local chemical environments, and progress of the plagioclase breakdown reaction. The presence of small amounts of hydrous minerals (amphibole, phlogopite and clinozoisite) in local equilibrium in plagioclase domains of most SMUK samples indicates that a small amount of H2O was present during high pressure metamorphism. [source]


Expression of 3-hydroxyisobutyrate dehydrogenase in cultured neural cells

JOURNAL OF NEUROCHEMISTRY, Issue 4 2008
Radovan Murín
Abstract The branched-chain amino acids (BCAAs) , isoleucine, leucine, and valine , belong to the limited group of substances transported through the blood,brain barrier. One of the functions they are thought to have in brain is to serve as substrates for meeting parenchymal energy demands. Previous studies have shown the ubiquitous expression of a branched-chain alpha-keto acid dehydrogenase among neural cells. This enzyme catalyzes the initial and rate-limiting step in the irreversible degradative pathway for the carbon skeleton of valine and the other two branched-chain amino acids. Unlike the acyl-CoA derivates in the irreversible part of valine catabolism, 3-hydroxyisobutyrate could be expected to be released from cells by transport across the mitochondrial and plasma membranes. This could indeed be demonstrated for cultured astroglial cells. Therefore, to assess the ability of neural cells to make use of this valine-derived carbon skeleton as a metabolic substrate for the generation of energy, we investigated the expression in cultured neural cells of the enzyme processing this hydroxy acid, 3-hydroxyisobutyrate dehydrogenase (HIBDH). To achieve this, HIBDH was purified from bovine liver to serve as antigen for the production of an antiserum. Affinity-purified antibodies against HIBDH specifically recognized the enzyme in liver and brain homogenates. Immunocytochemistry demonstrated the ubiquitous expression of HIBDH among cultured glial (astroglial, oligodendroglial, microglial, and ependymal cells) and neuronal cells. Using an RT-PCR technique, these findings were corroborated by the detection of HIBDH mRNA in these cells. Furthermore, immunofluorescence double-labeling of astroglial cells with antisera against HIBDH and the mitochondrial marker pyruvate dehydrogenase localized HIBDH to mitochondria. The expression of HIBDH in neural cells demonstrates their potential to utilize valine imported into the brain for the generation of energy. [source]


Role of TPH-2 in brain function: News from behavioral and pharmacologic studies

JOURNAL OF NEUROSCIENCE RESEARCH, Issue 14 2007
Roberto W. Invernizzi
Abstract The recent discovery of TPH-2, a new isoform of tryptophan hydroxylase, the enzyme that catalyses the transformation of tryptophan into 5-hydroxytryptophan and the rate-limiting step in brain serotonin (5-HT) biosynthesis, has boosted new interest in the many functions of 5-HT in the brain and non-nervous tissues. Recent studies on TPH-2 are reviewed with particular attention to the role of this enzyme in behavior and in response to drugs as assessed by comparing strains of mice carrying a functional polymorphism of TPH-2. Most studies concur to indicate that 5-HT synthesis through TPH-2 influence nervous tissues whereas TPH-1 is responsible for the synthesis and action of 5-HT in peripheral organs. Partial impairment of brain 5-HT synthesis caused by polymorphism of the gene encoding TPH-2 causes reduced release of the neurotransmitter, increased aggressiveness, and alters the response to drugs inhibiting the reuptake of 5-HT. Strain comparison might be a useful strategy to investigate the genotype-dependent alterations of TPH-2. © 2007 Wiley-Liss, Inc. [source]


Drug release properties of polymer coated ion-exchange resin complexes: Experimental and theoretical evaluation

JOURNAL OF PHARMACEUTICAL SCIENCES, Issue 3 2007
Seong Hoon Jeong
Abstract Although ion-exchange resins have been used widely as drug delivery systems, their exact release kinetics has not been reported yet. Usually only the rate-limiting step has been taken into account and the rest of the steps have been ignored as instantaneous processes. To investigate the exact release kinetics of polymer-coated drug/ion-exchange resin complexes for sustained drug delivery, the results of new mathematical modeling were compared with experimental results. Drug/resin complexes with a model drug, dextromethorphan, were prepared and used as cores for fluid-bed coating. An aqueous colloidal dispersion of poly(vinyl acetate) was applied for the coating. A comprehensive mathematical model was developed using a mechanistic approach by considering diffusion, swelling, and ion-exchange processes solved by numerical techniques. The rate-limiting factor of the uncoated resin particles was diffusion through the core matrix. Similarly, in the coated particles the rate-limiting factor was diffusion through the coating membrane. The mathematical model has captured the phenomena observed during experimental evaluations and the release dynamics from uncoated and coated (at different coat levels) particles were predicted accurately (maximum RMSE 2.4%). The mathematical model is a useful tool to theoretically evaluate the drug release properties from coated ion-exchange complexes thus can be used for design purposes. © 2006 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci [source]