Home About us Contact | |||
Rat Spinal Cord (rat + spinal_cord)
Selected AbstractsComparison of Localization of the Neurokinin 1 Receptor and Nitric Oxide Synthase with Calbindin D Labelling in the Rat Spinal CordANATOMIA, HISTOLOGIA, EMBRYOLOGIA, Issue 3 2000M. Nazli Summary A comparison of the localization of the neurokinin 1 (NK1) receptor and nitric oxide synthase with calbindin D labelling in the lumbar spinal cord was carried out in the rat using immunocytochemistry. Considerable regional variations were observed. Application of the antibody to calbindin D resulted in dense staining in laminae I and II and light staining in the other laminae. Occasional scattered cells were seen in the deep laminae and in the lamina X, the ventral horn and the lateral spinal nucleus. The results indicate that neurones expressing calbindin D, NK1 receptor and NOS are three separate populations in the dorsal horn of the lumbar spinal cord. [source] Mixed primary culture and clonal analysis provide evidence that NG2 proteoglycan-expressing cells after spinal cord injury are glial progenitorsDEVELOPMENTAL NEUROBIOLOGY, Issue 7 2007Soonmoon Yoo Abstract NG2+ cells in the adult rat spinal cord proliferate after spinal cord injury (SCI) and are postulated to differentiate into mature glia to replace some of those lost to injury. To further study these putative endogenous precursors, tissue at 3 days after SCI or from uninjured adults was dissociated, myelin partially removed and replicate cultures grown in serum-containing or serum-free medium with or without growth factors for up to 7 days in vitro (DIV). Cell yield after SCI was 5,6 times higher than from the normal adult. Most cells were OX42+ microglia/macrophages but there were also more than twice the normal number of NG2+ cells. Most of these coexpressed A2B5 or nestin, as would be expected for glial progenitors. Few cells initially expressed mature astrocyte (GFAP) or oligodendrocyte (CC1) markers, but more did at 7 DIV, suggesting differentiation of glial precursors in vitro. To test the hypothesis that NG2+ cells after SCI express progenitor-like properties, we prepared free-floating sphere and single cell cultures from purified suspension of NG2+ cells from injured spinal cord. We found that sphere cultures could be passaged in free-floating subcultures, and upon attachment the spheres clonally derived from an acutely purified single cell differentiated into oligodendrocytes and rarely astrocytes. Taken together, these data support the hypothesis that SCI stimulates proliferation of NG2+ cells that are glial progenitor cells. Better understanding the intrinsic properties of the NG2+ cells stimulated by SCI may permit future therapeutic manipulations to improve recovery after SCI. © 2007 Wiley Periodicals, Inc. Develop Neurobiol, 2007. [source] Cocaine- and amphetamine-regulated transcript peptide (CART) is present in peptidergic C primary afferents and axons of excitatory interneurons with a possible role in nociception in the superficial laminae of the rat spinal cordEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 6 2007Márk Kozsurek Abstract Cocaine- and amphetamine-regulated transcript peptides (CART) have been implicated in the regulation of several physiological functions, including pain transmission. A dense plexus of CART-immunoreactive fibres has been described in the superficial laminae of the spinal cord, which are key areas in sensory information and pain processing. In this study, we used antibody against CART peptide, together with markers for various types of primary afferents, interneurons and descending systems to determine the origin of the CART-immunoreactive axons in the superficial laminae of the rat spinal cord. Calcitonin gene-related peptide (CGRP), a marker for peptidergic primary afferents in the dorsal horn, was present in 72.6% and 34.8% of CART-immunoreactive axons in lamina I and II, respectively. The majority of these fibres also contained substance P (SP), while a few were somatostatin (SOM)-positive. The other subpopulation of CART-immunoreactive boutons in lamina I and II also expressed SP and/or SOM without CGRP, but contained vesicular glutamate transporter 2, which is present mainly in excitatory interneuronal terminals. Our data demonstrate that the majority of CART-immunoreactive axons in the spinal dorsal horn originate from peptidergic nociceptive primary afferents, while the rest arise from excitatory interneurons that contain SP or SOM. This strongly suggests that CART peptide can affect glutamatergic neurotransmission as well as the release and effects of SP and SOM in nociception and other sensory processes. [source] Macrophages and neurons are targets of retinoic acid signaling after spinal cord contusion injuryEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 2 2006Kirsten Schrage Abstract The physiological reactions after spinal cord injury are accompanied by local synthesis of the transcriptional activator retinoic acid (RA). RA exerts its effects by binding to retinoic acid receptors (RAR) which heterodimerize with retinoid X receptors (RXR) and then act as ligand-activated transcription factors. To identify possible cellular targets of RA we investigated protein levels and cellular distribution of retinoid receptors in the rat spinal cord at 4, 7, 14 and 21 days after a contusion injury. In the nonlesioned spinal cord, immunoreactivity for RAR,, RXR,, RXR, and RXR, was localized in the cytosol of neurons, that of RXR, and RXR, in astrocytes and that of RAR,, RXR, and RXR, in some oligodendrocytes. After contusion injury RAR, and all RXRs appeared in the cell nuclei of reactive microglia and macrophages. This nuclear staining began at 4 days, was most prominent at 7 and 14 days and had decreased at 21 days after injury. A similar nuclear translocation was also observed for the RAR,, RXR, and RXR, staining in neurons situated around the border of the contusion. These observations suggest that RA participates as a signal for the physiological responses of microglia and neurons after CNS injury. [source] Descending respiratory polysynaptic inputs to cervical and thoracic motoneurons diminish during early postnatal maturation in rat spinal cordEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 3 2005Laurent Juvin Abstract Isolated brainstem-spinal cord preparations were used to explore the coexistence of a direct and an indirect descending drive from the brainstem respiratory centre to cervical and thoracic respiratory motoneurons in the neonatal Sprague,Dawley rat. Polysynaptic spinal relay pathways from the respiratory centre were suppressed by selectively perfusing the cord with mephenesin (1 mm) or a solution enriched with Ca2+ and Mg2+. At birth, both direct and spinally relayed pathways are functional and contribute equally to the global descending respiratory drive. However, during the first postnatal week, significant maturational changes appear in the way the respiratory centre controls its target respiratory motoneurons in the cervical and thoracic spinal cord, with the direct respiratory drive becoming progressively predominant with maturation (from 50% to around 75% of the global descending command). The relative contributions of the monosynaptic and the polysynaptic spinal pathways may therefore have important implications for effective respiratory control during early postnatal development. [source] Adult neural progenitor cells provide a permissive guiding substrate for corticospinal axon growth following spinal cord injuryEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 7 2004Katharina Pfeifer Abstract Adult neural progenitor cells (NPC) are an attractive source for cell transplantation and neural tissue replacement after central nervous system (CNS) injury. Following transplantation of NPC cell suspensions into the acutely injured rat spinal cord, NPC survive; however, they migrate away from the lesion site and are unable to replace the injury-induced lesion cavity. In the present study we examined (i) whether NPC can be retained within the lesion site after co-transplantation with primary fibroblasts, and (ii) whether NPC promote axonal regeneration following spinal cord injury. Co-cultivation of NPC with fibroblasts demonstrated that NPC adhere to fibroblasts and the extracellular matrix produced by fibroblasts. In the presence of fibroblasts, the differentiation pattern of co-cultivated NPC was shifted towards glial differentiation. Three weeks after transplantation of adult spinal-cord-derived NPC with primary fibroblasts as mixed cell suspensions into the acutely injured cervical spinal cord in adult rats, the lesion cavity was completely replaced. NPC survived throughout the graft and differentiated exclusively into glial cells. Quantification of neurofilament-labeled axons and anterogradely labeled corticospinal axons indicated that NPC co-grafted with fibroblasts significantly enhanced axonal regeneration. Both neurofilament-labeled axons and corticospinal axons aligned longitudinally along GFAP-expressing NPC-derived cells, which displayed a bipolar morphology reminiscent of immature astroglia. Thus, grafted astroglial differentiated NPC promote axon regrowth following spinal cord injury by means of cellular guidance. [source] Central sprouting of uninjured small fiber afferents in the adult rat spinal cord following spinal nerve ligationEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 7 2004Jian Hu Abstract Partial nerve injury results in chronic pain that is difficult to treat effectively. To investigate the anatomic basis of this phenomenon we used wheat germ agglutinin,horseradish peroxidase (WGA-HRP) to label the central projections of uninjured small fibers (A, and C) in a well-established model of neuropathic pain created by selective spinal nerve ligation in the adult. We found extensive sprouting of uninjured WGA-HRP-labeled afferents into the central termination field in lamina II of dorsal horn normally occupied by L5 afferents whose peripheral axons had been ligated distal to the dorsal root ganglion. The formation of new projections by uninjured fibers into a functionally but not anatomically deafferented field in the adult may play a role in the development of chronic pain. [source] The expression of vesicular glutamate transporters VGLUT1 and VGLUT2 in neurochemically defined axonal populations in the rat spinal cord with emphasis on the dorsal hornEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 1 2003A. J. Todd Abstract Two vesicular glutamate transporters, VGLUT1 and VGLUT2, have recently been identified, and it has been reported that they are expressed by largely nonoverlapping populations of glutamatergic neurons in the brain. We have used immunocytochemistry with antibodies against both transporters, together with markers for various populations of spinal neurons, in an attempt to identify glutamatergic interneurons in the dorsal horn of the mid-lumbar spinal cord of the rat. The great majority (94,100%) of nonprimary axonal boutons that contained somatostatin, substance P or neurotensin, as well as 85% of those that contained enkephalin, were VGLUT2-immunoreactive, which suggests that most dorsal horn neurons that synthesize these peptides are glutamatergic. In support of this, we found that most somatostatin- and enkephalin-containing boutons (including somatostatin-immunoreactive boutons that lacked calcitonin gene-related peptide and were therefore probably derived from local interneurons) formed synapses at which AMPA receptors were present. We also investigated VGLUT expression in central terminals of primary afferents. Myelinated afferents were identified with cholera toxin B subunit; most of those in lamina I were VGLUT2-immunoreactive, whereas all those in deeper laminae were VGLUT1-immunoreactive, and some (in laminae III,VI) appeared to contain both transporters. However, peptidergic primary afferents that contained substance P or somatostatin (most of which are unmyelinated), as well as nonpeptidergic C fibres (identified with Bandeiraea simplicifolia isolectin B4) showed low levels of VGLUT2-immunoreactivity, or were not immunoreactive with either VGLUT antibody. As all primary afferents are thought to be glutamatergic, this raises the possibility that unmyelinated afferents, most of which are nociceptors, express a different vesicular glutamate transporter. [source] Peripheral axotomy induces only very limited sprouting of coarse myelinated afferents into inner lamina II of rat spinal cordEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 2 2002Lan Bao Abstract Peripheral axotomy-induced sprouting of thick myelinated afferents (A-fibers) from laminae III,IV into laminae I,II of the spinal cord is a well-established hypothesis for the structural basis of neuropathic pain. However, we show here that the cholera toxin B subunit (CTB), a neuronal tracer used to demonstrate the sprouting of A-fibers in several earlier studies, also labels unmyelinated afferents (C-fibers) in lamina II and thin myelinated afferents in lamina I, when applied after peripheral nerve transection. The lamina II afferents also contained vasoactive intestinal polypeptide and galanin, two neuropeptides mainly expressed in small dorsal root ganglion (DRG) neurons and C-fibers. In an attempt to label large DRG neurons and A-fibers selectively, CTB was applied four days before axotomy (pre-injury-labelling), and sprouting was monitored after axotomy. We found that only a small number of A-fibers sprouted into inner lamina II, a region normally innervated by C-fibers, but not into outer lamina II or lamina I. Such sprouts made synaptic contact with dendrites in inner lamina II. Neuropeptide Y (NPY) was found in these sprouts in inner lamina II, an area very rich in Y1 receptor-positive processes. These results suggest that axotomy-induced sprouting from deeper to superficial layers is much less pronounced than previously assumed, in fact it is only marginal. This limited reorganization involves large NPY immunoreactive DRG neurons sprouting into the Y1 receptor-rich inner lamina II. Even if quantitatively small, it cannot be excluded that this represents a functional circuitry involved in neuropathic pain. [source] Characterization of the single-channel properties of NMDA receptors in laminae I and II of the dorsal horn of neonatal rat spinal cordEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 10 2001G. Mark Green Abstract The single-channel properties of native NMDA receptors in laminae I and II of the dorsal horn of the neonatal rat spinal cord were studied using outside-out patch-clamp techniques. These receptors were found to have several features that distinguish them from native NMDA receptors elsewhere in the CNS. Single-channel currents activated by NMDA (100 nm) and glycine (10 µm) exhibited five distinct amplitude components with slope-conductance values of 19.9 ± 0.8, 32.9 ± 0.6, 42.2 ± 1.1, 53.0 ± 1.0 and 68.7 ± 1.5 pS. Direct transitions were observed between all conductance levels but transitions between 69-pS openings and 20-, 33- and 42-pS openings were rare. There was no significant difference in the frequency of direct transitions from 42- to 20-pS compared to 20- to 42-pS transitions. The Kb (0 mV) for Mg2+ was 89 µm. The Mg2+ unblocking rate constant was similar to other reported values. However, the Mg2+ blocking rate constant was larger than other reported values, suggesting an unusually high sensitivity to Mg2+. The NR2B subunit-selective antagonist, ifenprodil, had no significant effect on overall channel activity but significantly decreased the mean open time of 53-pS openings. These results suggest neonatal laminae I and II NMDA receptors are not simply composed of NR1 and NR2B subunits or NR1 and NR2D subunits. It is possible that these properties are due to an as yet uninvestigated combination of two NR2 subunits with the NR1 subunit or a combination of NR3A, NR2 and NR1 subunits. [source] The generation of rhythmic activity in dissociated cultures of rat spinal cordEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 2 2001Jürg Streit Abstract Locomotion in vertebrates is controlled by central pattern generators in the spinal cord. The roles of specific network architecture and neuronal properties in rhythm generation by such spinal networks are not fully understood. We have used multisite recording from dissociated cultures of embryonic rat spinal cord grown on multielectrode arrays to investigate the patterns of spontaneous activity in randomised spinal networks. We were able to induce similar patterns of rhythmic activity in dissociated cultures as in slice cultures, although not with the same reliability and not always with the same protocols. The most reliable rhythmic activity was induced when a partial disinhibition of the network was combined with an increase in neuronal excitability, suggesting that both recurrent synaptic excitation and neuronal excitability contribute to rhythmogenesis. During rhythmic activity, bursts started at several sites and propagated in variable ways. However, the predominant propagation patterns were independent of the protocol used to induce rhythmic activity. When synaptic transmission was blocked by CNQX, APV, strychnine and bicuculline, asynchronous low-rate activity persisted at ,,50% of the electrodes and ,,70% of the sites of burst initiation. Following the bursts, the activity in the interval was transiently suppressed below the level of intrinsic activity. The degree of suppression was proportional to the amount of activity in the preceding burst. From these findings we conclude that rhythmic activity in spinal cultures is controlled by the interplay of intrinsic neuronal activity and recurrent excitation in neuronal networks without the need for a specific architecture. [source] Plateau potential-dependent windup of the response to primary afferent stimuli in rat dorsal horn neuronsEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 9 2000Valérie Morisset Abstract In the spinal cord, repetitive stimulation of nociceptive afferent fibres induces a progressive build-up of dorsal horn neuron (DHN) responses. This ,action potential windup' is used as a cellular model of central sensitization to pain. It partly relies on synaptic plasticity, being reduced after blocking NMDA and neurokinin receptors. Using intracellular recordings in a slice preparation of the rat spinal cord, we have analysed the implication of an additional non-synaptic component of windup. Primary afferent fibres were electrically stimulated in the dorsal root. Of 47 responding deep DHNs, 17 (36%) produced action potential windup and afterdischarge during consecutive periods of repeated stimuli (0.4,1 Hz) activating high- (n = 13 neurons) and low-threshold (n = 6 neurons) afferent fibres. When the NMDA receptors were blocked, the rate of windup did not change. In all neurons, there was an absolute correlation between expression of windup and the production of calcium-dependent plateau potentials. Sensitization of the DHN response, similar to the synaptically induced windup, was obtained by repetitive intracellular injection of depolarizing current pulses. This intracellularly induced windup had the same pharmacology as the plateau potential. Synaptically induced windup was also abolished by nifedipine, an L-type calcium-channel blocker. Expression of plateau properties in DHNs is therefore a critical component of windup, operating downstream of synaptic processes. Being associated with calcium influx, generation of plateau potentials could be a link between short-term plasticity and the long-term modification of DHN excitability associated with central sensitization. [source] Astroglia-mediated effects of uric acid to protect spinal cord neurons from glutamate toxicityGLIA, Issue 5 2007Yangzhou Du Abstract Uric acid (UA) has been demonstrated to reduce damage to neurons elicited by oxidative stress. However, our studies utilizing cultures derived from embryonic rat spinal cord indicate that an astroglia-mediated mechanism is involved in the effects of UA to protect neurons from glutamate toxicity. The damage elicted by glutamate to neurons in a mixed culture of spinal cord cells can be reversed by UA. Furthermore, addition of UA after the termination of glutamate exposure suggests that UA plays an active role in mediating neuroprotection rather than purely binding peroxynitrite, as previously thought. Importantly, in pure neuron cultures from the same tissue, UA does not protect against glutamate toxicity. Addition of astroglia to the pure neuron cultures restores the ability of UA to protect the neurons from glutamate-induced toxicity. Our results also suggest that glia provide EAAT-1 and EAAT-2 glutamate transporters to protect neurons from glutamate, that functional EAATs may be necessary to mediate the effects of UA, and that treatment with UA results in upregulation of EAAT-1 protein. Taken together, our data strongly suggest that astroglia in mixed cultures are essential for mediating the effects of UA, revealing a novel mechanism by which UA, a naturally produced substance in the body, may act to protect neurons from damage during insults such as spinal cord injury. © 2007 Wiley-Liss, Inc. [source] Differential generation of oligodendrocytes from human and rodent embryonic spinal cord neural precursorsGLIA, Issue 4 2004Siddharthan Chandran Abstract Human neural precursors are considered to have widespread therapeutic possibilities on account of their ability to provide large numbers of cells whilst retaining multipotentiality. Application to human demyelinating diseases requires improved understanding of the signalling requirements underlying the generation of human oligodendrocytes from immature cell populations. In this study, we compare and contrast the capacity of neural precursors derived from the developing human and rodent spinal cord to generate oligodendrocytes. We show that the developing human spinal cord (6,12 weeks of gestation) displays a comparable ventrodorsal gradient of oligodendrocyte differentiation potential to the embryonic rodent spinal cord. In contrast, fibroblast growth factor 2 (FGF-2) expanded human neural precursors derived from both isolated ventral or dorsal cultures show a reduced capacity to generate oligodendrocytes, whereas comparable rodent cultures demonstrate a marked increase in oligodendrocyte formation following FGF-2 treatment. In addition, we provide evidence that candidate growth factors suggested from rodent studies, including FGF-2 and platelet-derived growth factor (PDGF) do not stimulate proliferation of human oligodendrocyte lineage cells. Finally, we show that the in vivo environment of the acutely demyelinating adult rat spinal cord is insufficient to stimulate the differentiation of immature human spinal cord cells to oligodendrocytes. These results provide further evidence for inter-species difference in the capacity of neural precursors to generate oligodendrocytes. © 2004 Wiley-Liss, Inc. [source] Transplantation of an acutely isolated bone marrow fraction repairs demyelinated adult rat spinal cord axonsGLIA, Issue 1 2001Masanori Sasaki Abstract The potential of bone marrow cells to differentiate into myelin-forming cells and to repair the demyelinated rat spinal cord in vivo was studied using cell transplantation techniques. The dorsal funiculus of the spinal cord was demyelinated by x-irradiation treatment, followed by microinjection of ethidium bromide. Suspensions of a bone marrow cell fraction acutely isolated from femoral bones in LacZ transgenic mice were prepared by centrifugation on a density gradient (Ficoll-Paque) to remove erythrocytes, platelets, and debris. The isolated cell fraction contained hematopoietic and nonhematopoietic stem and precursor cells and lymphocytes. The cells were transplanted into the demyelinated dorsal column lesions of immunosuppressed rats. An intense blue ,-galactosidase reaction was observed in the transplantation zone. The genetically labeled bone marrow cells remyelinated the spinal cord with predominately a peripheral pattern of myelination reminiscent of Schwann cell myelination. Transplantation of CD34+ hematopoietic stem cells survived in the lesion, but did not form myelin. These results indicate that bone marrow cells can differentiate in vivo into myelin-forming cells and repair demyelinated CNS. GLIA 35:26,34, 2001. © 2001 Wiley-Liss, Inc. [source] The glutamatergic nature of TRPV1-expressing neurons in the spinal dorsal hornJOURNAL OF NEUROCHEMISTRY, Issue 1 2009Hong-Yi Zhou Abstract The transient receptor potential vanilloid receptor 1 (TRPV1) is expressed on primary afferent terminals and spinal dorsal horn neurons. However, the neurochemical phenotypes and functions of TRPV1-expressing post-synaptic neurons in the spinal cord are not clear. In this study, we tested the hypothesis that TRPV1-expressing dorsal horn neurons are glutamatergic. Immunocytochemical labeling revealed that TRPV1 and vesicular glutamate transporter-2 were colocalized in dorsal horn neurons and their terminals in the rat spinal cord. Resiniferatoxin (RTX) treatment or dorsal rhizotomy ablated TRPV1-expressing primary afferents but did not affect TRPV1- and vesicular glutamate transporter-2-expressing dorsal horn neurons. Capsaicin significantly increased the frequency of glutamatergic spontaneous excitatory post-synaptic currents and miniature excitatory post-synaptic currents in almost all the lamina II neurons tested in control rats. In RTX-treated or dorsal rhizotomized rats, capsaicin still increased the frequency of spontaneous excitatory post-synaptic currents and miniature excitatory post-synaptic currents in the majority of neurons examined, and this effect was abolished by a TRPV1 blocker or by non-NMDA receptor antagonist. In RTX-treated or in dorsal rhizotomized rats, capsaicin also produced an inward current in a subpopulation of lamina II neurons. However, capsaicin had no effect on GABAergic and glycinergic spontaneous inhibitory post-synaptic currents of lamina II neurons in RTX-treated or dorsal rhizotomized rats. Collectively, our study provides new histological and functional evidence that TRPV1-expressing dorsal horn neurons in the spinal cord are glutamatergic and that they mediate excitatory synaptic transmission. This finding is important to our understanding of the circuitry and phenotypes of intrinsic dorsal horn neurons in the spinal cord. [source] Substance P initiates NFAT-dependent gene expression in spinal neuronsJOURNAL OF NEUROCHEMISTRY, Issue 2 2006V. S. Seybold Abstract Persistent hyperalgesia is associated with increased expression of proteins that contribute to enhanced excitability of spinal neurons, however, little is known about how expression of these proteins is regulated. We tested the hypothesis that Substance P stimulation of neurokinin receptors on spinal neurons activates the transcription factor nuclear factor of activated T cells isoform 4 (NFATc4). The occurrence of NFATc4 in spinal cord was demonstrated with RT-PCR and immunocytochemistry. Substance P activated NFAT-dependent gene transcription in primary cultures of neonatal rat spinal cord transiently transfected with a luciferase DNA reporter construct. The effect of Substance P was mediated by neuronal neurokinin-1 receptors that coupled to activation of protein kinase C, l -type voltage-dependent calcium channels, and calcineurin. Interestingly, Substance P had no effect on cyclic AMP response element (CRE)-dependent gene expression. Conversely, calcitonin gene-related peptide, which activated CRE-dependent gene expression, did not activate NFAT signaling. These data provide evidence that peptides released from primary afferent neurons regulate discrete patterns of gene expression in spinal neurons. Because the release of Substance P and calcitonin gene-related peptide from primary afferent neurons is increased following peripheral injury, these peptides may differentially regulate the expression of proteins that underlie persistent hyperalgesia. [source] Differential activation of C1 complement components in rat spinal cord after sciatic nerve injuryJOURNAL OF NEUROCHEMISTRY, Issue 2003J. Mika Neuroimmune interactions are discussed to drive neuropathic pain. We used the Bennett model to correlate pain and cellular expression profiles of the complement factors C1q and C1q-associated serine proteases C1r/C1s in lumbar spinal cord. At 2 days C1q mRNA levels increased ipsilateral to the lesion, and peaked at 8 days when allodynia and severe walking problems were present. During regeneration walking problems disappeared together with C1q mRNA levels. C1q biosynthesis was restricted to microglia. Surprisingly, C1s/C1r biosynthesis was not increased after injury suggesting a role for C1q different from classical complement activation. Sustained C1q expression in spinal microglia after lesion in conjunction with pain behavior indicates that microglial C1q may be causally involved in the development and maintenance of neuropathic pain. Acknowledgements:, Supported by BMBF01GG9818, SFB297, DFGWE910/8-3, KBN3P05C00623. [source] PPAR gamma activators induce differentiation of B12 oligodendrocyte-like cells and rat spinal cord oligodendrocytesJOURNAL OF NEUROCHEMISTRY, Issue 2002A. D. Roth The regulation of CNS lipid metabolism by nuclear receptors and their relation to cell differentiation remains undetermined. Since myelinating oligodendrocytes are the major lipid-synthesizing cells in the CNS, we characterized the effect of PPAR activation in a CNS derived cell line that expresses oligodendrocyte markers and compared these effects with oligodendrocyte primary cultures (90,95% pure). The rat glioma derived B12 cell line express the three major PPAR isoforms (PPAR ,, , and ,) and present a large number of peroxisomes, indicating an important lipid metabolism. Treatment with ciprofibrate, a general PPAR activator and clinical hypolipidemic, induces proliferation arrest, process extension and a moderate rise in the expression of acyl-CoA oxidase, a specific marker of peroxisomal proliferation. Cell growth arrest by ciprofibrate is enhanced 100-fold by low concentrations of retinoic acid (0.01 ,m), suggesting the involvement of the PPAR-retinoid acid receptor heterodimers. Since ciprofibrate possibly acts by modifying the concentration of endogenous PPAR ligands, we traced its effects to PPAR, by using isoform specific ligands: Troglitazone and 15-deoxy-prostaglandin J2, both of which induce growth arrest and process extension in B12 cells. These effects were corroborated on rat spinal cord derived oligodendrocytes primary cultures, where a significant rise in the number of mature oligodendrocytes is observed in response to PPAR, activators. These results show that PPAR,, a master gene in the differentiation of adipose tissue could be involved in the lipid metabolism of maturing oligodendrocytes. [source] A novel transverse push,pull microprobe: in vitro characterization and in vivo demonstration of the enzymatic production of adenosine in the spinal cord dorsal hornJOURNAL OF NEUROCHEMISTRY, Issue 1 2001Shawnna L. Patterson Adenosine produces analgesia in the spinal cord and can be formed extracellularly through enzymatic conversion of adenine nucleotides. A transverse push,pull microprobe was developed and characterized to sample extracellular adenosine concentrations of the dorsal horn of the rat spinal cord. Samples collected via this sampling technique reveal that AMP is converted to adenosine in the dorsal horn. This conversion is decreased by the ecto-5,-nucleotidase inhibitor, ,,,-methylene ADP. Related behavioral studies demonstrate that AMP administered directly to the spinal cord can reverse the secondary mechanical hyperalgesia characteristic of the intradermal capsaicin model of inflammatory pain. The specific adenosine A1 receptor antagonist 8-cyclopentyl-1,3-dimethylxanthine (CPT) inhibits the antihyperalgesia produced by AMP. This research introduces a novel microprobe that can be used as an adjunct sampling technique to microdialysis and push,pull cannulas. Furthermore, we conclude that AMP is converted to adenosine in the dorsal horn of the spinal cord by ecto-5,-nucleotidase and subsequently may be one source of adenosine, acting through adenosine A1 receptors in the dorsal horn of the spinal cord, which produce antihyperalgesia. [source] Induction of Glycerol Phosphate Dehydrogenase Gene Expression During Seizure and AnalgesiaJOURNAL OF NEUROCHEMISTRY, Issue 4 2000Wolfgang A. Link Abstract: Using mRNA differential display, we found that the gene for NAD+ -dependent glycerol phosphate dehydrogenase (GPDH; EC 1.1.1.8) is induced in rat brain following seizure activity. Northern blot and in situ hybridization analysis confirmed the differential display results; they also showed, in a separate model of neuronal activation, that after thermal noxious stimulation of the hind-paws, a similar increase in GPDH mRNA occurs in the areas of somatotopic projection in the lumbar spinal cord. Surprisingly, administration of analgesic doses of morphine or the nonsteroidal antiinflammatory drugs aspirin, metamizol (dipyrone), and indomethacin also increased GPDH mRNA levels in rat spinal cord. The opioid receptor antagonist naloxone completely blocked morphine induction of GPDH but had no effect on GPDH induction by noxious heat stimulation or metamizol treatment, implicating different mechanisms of GPDH induction. Nevertheless, in all cases, induction of the GPDH gene requires adrenal steroids and new protein synthesis, as the induction was blocked in adrenalectomized rats and by cycloheximide treatment, respectively. Our results suggest that the induction of the GPDH gene upon peripheral noxious stimulation is related to the endogenous response to pain as it is mimicked by exogenously applied analgesic drugs. [source] Intracellular glutathione mediates the denitrosylation of protein nitrosothiols in the rat spinal cordJOURNAL OF NEUROSCIENCE RESEARCH, Issue 3 2009Jorge M. Romero Abstract Protein S-nitrosothiols (PrSNOs) have been implicated in the pathophysiology of neuroinflammatory and neurodegenerative disorders. Although the metabolically instability of PrSNOs is well known, there is little understanding of the factors involved in the cleavage of S-NO linkage in intact cells. To address this issue, we conducted chase experiments in spinal cord slices incubated with S-nitrosoglutathione (GSNO). The results show that removal of GSNO leads to a rapid disappearance of PrSNOs (t˝ , 2 hr), which is greatly accelerated when glutathione (GSH) levels are raised with the permeable analogue GSH ethyl ester. Moreover, PrSNOs are stable in the presence of the GSH depletor diethyl maleate, indicating that GSH is critical for protein denitrosylation. Inhibition of GSH-dependent enzymes (glutathione S-transferase, glutathione peroxidase, and glutaredoxin) and enzymes that could mediate denitrosylation (alcohol dehydrogense-III, thioredoxin and protein disulfide isomerase) do not alter the rate of PrSNO decomposition. These findings and the lack of protein glutathionylation during the chase indicate that most proteins are denitrosylated via rapid transnitrosylation with GSH. The differences in the denitrosylation rate of individual proteins suggest the existence of additional structural factors in this process. This study is relevant to our recent discovery that PrSNOs accumulate in the central nervous system of patients with multiple sclerosis. © 2008 Wiley-Liss, Inc. [source] Expressions of nitrotyrosine and TUNEL immunoreactivities in cultured rat spinal cord neurons after exposure to glutamate, nitric oxide, or peroxynitriteJOURNAL OF NEUROSCIENCE RESEARCH, Issue 5 2001Y. Manabe Abstract Although excitotoxic and oxidative stress play important roles in spinal neuron death, the exact mechanism is not fully understood. We examined cell damage of primary culture of 11-day-old rat spinal cord by addition of glutamate, nitric oxide (NO) or peroxynitrite (PN) with detection of nitrotyrosine (NT) or terminal deoxynucleotidyl transferase-mediated dUTP-biotin in situ nick end labeling (TUNEL). With addition of glutamate, NOC18 (a slow NO releaser) or PN, immunoreactivity for NT became stronger in the cytoplasm of large motor neurons in the ventral horn at 6 to 48 hr and positive in the axons of the ventral horn at 24 to 48 hr. TUNEL positive nuclei were found in spinal large motor neurons from 24 hr, and the positive cell number greatly increased at 48 hr in contrast to the vehicle. Pretreatment of cultures with ,-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA)/kainate receptor antagonist, NO-suppressing agent, and antioxidant protected the immunoreactivity for NT or TUNEL. The present results suggest that both excitotoxic and oxidative stress play an important role in the upregulation of NT nitration and the apoptotic pathway in cultured rat spinal neurons. J. Neurosci. Res. 65:371,377, 2001. © 2001 Wiley-Liss, Inc. [source] Retrospective measurement of the diffusion tensor eigenvalues from diffusion anisotropy and mean diffusivity in DTIMAGNETIC RESONANCE IN MEDICINE, Issue 1 2006Khader M. Hasan Abstract A simple theoretical framework to compute the eigenvalues of a cylindrically symmetric prolate diffusion tensor (D) from one of the rotationally-invariant diffusion anisotropy indices and average diffusivity is presented and validated. Cylindrical or axial symmetry assumes a prolate ellipsoid shape (,, = ,1 > ,, = (,2 + ,3)/2; ,2 = ,3). A prolate ellipsoid with such symmetry is largely satisfied in a number of white matter (WM) structures, such as the spinal cord, corpus callosum, internal capsule, and corticospinal tract. The theoretical model presented is validated using in vivo DTI measurements of rat spinal cord and human brain, where eigenvalues were calculated from both the set of diffusion coefficients and a tensor analysis. This method was used to retrospectively analyze literature data that reported tensor-derived average diffusivity, anisotropy, and eigenvalues, and similar eigenvalue measurements were obtained. The method provides a means to retrospectively reanalyze literature data that do not report eigenvalues. Other potential applications of this method are also discussed. Magn Reson Med, 2006. © 2006 Wiley-Liss, Inc. [source] New MRI method with contrast based on the macromolecular characteristics of tissuesMAGNETIC RESONANCE IN MEDICINE, Issue 2 2003Arnon Neufeld Abstract A new MRI method with a contrast that is derived from the macromolecular composition and spin dynamics in the tissue is described and demonstrated on excised mouse brain and rat spinal cord. In the method, magnetization is selectively excited in the macromolecules by using a double quantum filter and subsequently transferred to water. The new imaging method differs from previous methods that rely on magnetization transfer contrast (MTC) in that it enables a separate and independent control of the effect of the macromolecule characteristics, chemical exchange, and water-related parameters on the images. Magn Reson Med 50:229,234, 2003. © 2003 Wiley-Liss, Inc. [source] Morphine tolerance increases [3H]MK-801 binding affinity and constitutive neuronal nitric oxide synthase expression in rat spinal cord. (National Medical Defense Center, Taipei, Taiwan) Br J Anaesth 2000;85:587,591.PAIN PRACTICE, Issue 2 2001Chih-Shung Wong N -Methyl-D-aspartate (NMDA) receptor antagonists and nitric oxide synthase (NOS) inhibitors inhibit morphine tolerance. In the present study, a lumbar subarachnoid polyethylene (PE10) catheter was implanted for drug administration to study alterations in NMDA receptor activity and NOS protein expression in a morphine-tolerant rat spinal model. Antinociceptive tolerance induced by intrathecal morphine infusion (10 ,g h,1) for 5 days. Co-administered MK801 with morphine was used to inhibit the development of morphine tolerance. Lumbar spinal cord segments were removed and prepared for [3H]MK-801 binding assays and NOS western blotting. The binding affinity of [3H]MK-801 was higher in spinal cords of morphine-related rats than in control rats. There was no difference in Bmax. Western blot analysis showed that constitutive expression of neuronal NOS protein in the morphine-tolerant group was twice that in the control group. This up-regulation was partially prevented by MK-801. The results suggest that morphine tolerance affects NMDA receptor binding activity and increases nNOS expression in the rat spinal cord. Comment by Octavio Calvillo, M.D., Ph.D. Morphine tolerance may be due to receptor down-regulation or receptor uncoupling; activation of the NMDA-dependent pain-facilitatory system may also play a role. It has been proposed that NMDA receptor activation may play a role in morphine tolerance. NMDA receptor antagonists and nitric oxide synthase [NOS] inhibitors may prevent morphine tolerance. Tolerance was induced in rats by intrathecal injection of morphine [10 ug/h] for 5 days, co-administration of MK801 [NMDA antagonist] with morphine was used to prevent morphine tolerance. Lumbar spinal cord segments were removed and prepared for [H3]MK801 binding assays and NOS western blotting. The binding affinity of labeled MK801 was higher in spinal cords of morphine tolerant rats than in control rats. Western blot analysis showed that constitutive expression of neuronal NOS protein in the morphine tolerant rats was twice that in the control group, thus, up-regulation was prevented by MK801. The results suggest that morphine tolerance affect NMDA receptor binding activity and increase neuronal protein expression in rat the spinal cord. [source] VGLUT1 and VGLUT2 innervation in autonomic regions of intact and transected rat spinal cordTHE JOURNAL OF COMPARATIVE NEUROLOGY, Issue 6 2007Ida J. Llewellyn-Smith Abstract Fast excitatory neurotransmission to sympathetic and parasympathetic preganglionic neurons (SPN and PPN) is glutamatergic. To characterize this innervation in spinal autonomic regions, we localized immunoreactivity for vesicular glutamate transporters (VGLUTs) 1 and 2 in intact cords and after upper thoracic complete transections. Preganglionic neurons were retrogradely labeled by intraperitoneal Fluoro-Gold or with cholera toxin B (CTB) from superior cervical, celiac, or major pelvic ganglia or adrenal medulla. Glutamatergic somata were localized with in situ hybridization for VGLUT mRNA. In intact cords, all autonomic areas contained abundant VGLUT2-immunoreactive axons and synapses. CTB-immunoreactive SPN and PPN received many close appositions from VGLUT2-immunoreactive axons. VGLUT2-immunoreactive synapses occurred on Fluoro-Gold-labeled SPN. Somata with VGLUT2 mRNA occurred throughout the spinal gray matter. VGLUT2 immunoreactivity was not noticeably affected caudal to a transection. In contrast, in intact cords, VGLUT1-immunoreactive axons were sparse in the intermediolateral cell column (IML) and lumbosacral parasympathetic nucleus but moderately dense above the central canal. VGLUT1-immunoreactive close appositions were rare on SPN in the IML and the central autonomic area and on PPN. Transection reduced the density of VGLUT1-immunoreactive axons in sympathetic subnuclei but increased their density in the parasympathetic nucleus. Neuronal cell bodies with VGLUT1 mRNA occurred only in Clarke's column. These data indicate that SPN and PPN are densely innervated by VGLUT2-immunoreactive axons, some of which arise from spinal neurons. In contrast, the VGLUT1-immunoreactive innervation of spinal preganglionic neurons is sparse, and some may arise from supraspinal sources. Increased VGLUT1 immunoreactivity after transection may correlate with increased glutamatergic transmission to PPN. J. Comp. Neurol. 503:741,767, 2007. © 2007 Wiley-Liss, Inc. [source] Activation of metabotropic glutamate receptor 5 improves recovery after spinal cord injury in rodents,ANNALS OF NEUROLOGY, Issue 1 2009Kimberly R. Byrnes PhD Objective Activation of metabotropic glutamate receptor 5 (mGluR5) has neuroprotective properties in vitro and has been reported to limit postischemic lesion volume in vivo. Previously, mGluR5 has been identified on microglia in vitro, but the effects of mGluR5 activation on inflammation in vivo or on recovery after spinal cord injury is unknown. Methods Rats received intrathecal infusion of the selective mGluR5 agonist (RS)-2-chloro-5-hydroxyphenylglycine (CHPG) for 7 days after moderate impact spinal cord injury at T9. Complementary studies examined CHPG effects on activated spinal microglia cultures. Results Functional motor recovery was significantly increased by CHPG treatment up to 28 days after injury, with improvements in weight bearing, step taking, and coordination of stepping behavior. CHPG treatment significantly reduced lesion volume and increased white matter sparing at 28 days after injury. Administration of CHPG attenuated microglial-associated inflammatory responses in a dose-dependent fashion, including expression of ED1, Iba-1, Galectin-3, NADPH oxidase components, tumor necrosis factor-,, and inducible nitric oxide synthase. Because mGluR5 is expressed by microglial cells in the rat spinal cord, such effects may be mediated by direct action on microglial cells. mGluR5 stimulation also reduced microglial activation and decreased microglial-induced neurotoxicity in spinal cord microglia cultures; the latter effects were blocked by the selective mGluR5 antagonist MTEP. Interpretation These data demonstrate that mGluR5 activation can reduce microglial-associated inflammation, suggesting that the protective effects of mGluR5 agonists may reflect this action. Ann Neurol 2009;66:63,74 [source] The effect of intravesical electrical stimulation on bladder function and synaptic neurotransmission in the rat spinal cord after spinal cord injuryBJU INTERNATIONAL, Issue 8 2009Chang Hee Hong OBJECTIVE To investigate the effects of intravesical electrical stimulation (IVES) on bladder function and synaptic neurotransmission in the lumbosacral spinal cord in the spinalized rat, as the clinical benefits of IVES in patients with increased residual urine or reduced bladder capacity have been reported but studies on the mechanism of IVES have mainly focused on bladder A, afferents in central nervous system-intact rats. MATERIALS AND METHODS In all, 30 female Sprague-Dawley rats were divided equally into three groups: normal control rats, sham-stimulated spinalized rats and IVES-treated spinalized rats. IVES was started 5 weeks after spinal cord injury (SCI) and was performed 20 min a day for 5 consecutive days. At 7 days after IVES, conscious filling cystometry was performed. Sections from the L6 and S1 spinal cord segments were examined for n -methyl- d -aspartic acid receptor 1 (NMDAR1) subunit and ,-aminobutyric acid (GABA) immunoactivity. RESULTS In IVES-treated spinalized rats, the number and maximal pressure of nonvoiding detrusor contractions were significantly less than in sham-stimulated spinalized rats. The mean maximal voiding pressure was also lower in IVES-treated than in sham-stimulated spinalized rats. IVES significantly reduced the interval between voiding contractions compared with the untreated spinalized rats. There was an overall increase in NMDAR1 immunoactivity after SCI, which was significantly lower in IVES-treated spinalized rats. Immunoactivity of GABA after SCI was significantly lower than in the control group and was significantly higher in IVES-treated spinalized rats. CONCLUSION Our results suggest that IVES might affect voiding contractions in addition to inhibiting C-fibre activity and that IVES seems to have a more complex effect on the bladder control pathway. For synaptic neurotransmission in the spinal cord, IVES could possibly shift the balance between excitation and inhibition towards inhibition. [source] Spinal administration of lipoxygenase inhibitors suppresses behavioural and neurochemical manifestations of naloxone-precipitated opioid withdrawalBRITISH JOURNAL OF PHARMACOLOGY, Issue 2 2003Tuan Trang This study investigated the role of spinal lipoxygenase (LOX) products in the induction and expression of opioid physical dependence using behavioural assessment of withdrawal and immunostaining for CGRP and Fos protein expression in the spinal cord. Administration of escalating doses (5,50 mg kg,1; i.p.) of morphine for 5 days markedly elevated CGRP-like immunoreactivity in the dorsal horn of the rat spinal cord. Naloxone (2 mg kg,1; i.p.) challenge precipitated a robust withdrawal syndrome that depleted CGRP-like immunoreactivity and increased the number of Fos-like immunoreactive neurons in the dorsal horn. Intrathecal administration of NDGA (10, 20 ,g), a nonselective LOX inhibitor, AA-861 (1.5, 3 ,g), a 5-LOX selective inhibitor, or baicalein (1.4, 2.8 ,g), a 12-LOX selective inhibitor, concurrently with systemic morphine for 5 days or as a single injection immediately preceding naloxone challenge, blocked the depletion of CGRP-like immunoreactivity, prevented increase in the number of Fos-like immunoreactive neurons in the dorsal horn, and significantly attenuated the morphine withdrawal syndrome. The results of this study suggest that activity of LOX products, at the spinal level, contributes to the expression of opioid physical dependence, and that this activity may be expressed through increased sensory neuropeptide release. British Journal of Pharmacology (2003) 140, 295,304. doi:10.1038/sj.bjp.0705440 [source] |