Rat Sciatic Nerve (rat + sciatic_nerve)

Distribution by Scientific Domains


Selected Abstracts


Noxious heat-induced CGRP release from rat sciatic nerve axons in vitro

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 8 2001
S. K. Sauer
Abstract Noxious heat may act as an endogenous activator of the ionotropic capsaicin receptor (VR1) and of its recently found homologue VRL1, expressed in rat dorsal root ganglion cells and present along their nerve fibres. We have previously reported that capsaicin induces receptor-mediated and Ca++ -dependent calcitonin gene-related peptide (CGRP) release from axons of the isolated rat sciatic nerve. Here we extended the investigation to noxious heat stimulation and the transduction mechanisms involved. Heat stimulation augmented the CGRP release from desheathed sciatic nerves in a log,linear manner with a Q10 of ,,15 and a threshold between 40 and 42 °C. The increases were 1.75-fold at 42 °C, 3.8-fold at 45 °C and 29.1-fold at 52 °C; in Ca++ -free solution these heat responses were abolished or reduced by 71 and 92%, respectively. Capsazepine (10 µm) and Ruthenium Red (1 µm) used as capsaicin receptor/channel antagonists did not significantly inhibit the heat-induced release. Pretreatment of the nerves with capsaicin (100 µm for 30 min) caused complete desensitization to 1 µm capsaicin, but a significant heat response remained, indicating that heat sensitivity is not restricted to capsaicin-sensitive fibres. The sciatic nerve axons responded to heat, potassium and capsaicin stimulation with a Ca++ -dependent CGRP release. Blockade of the capsaicin receptor/channels had little effect on the heat-induced neuropeptide release. We conclude therefore that other heat-activated ion channels than VR1 and VRL1 in capsaicin-sensitive and -insensitive nerve fibres may cause excitation, axonal Ca++ influx and subsequent CGRP release. [source]


Neuropathy-induced apoptosis: Protective effect of physostigmine

JOURNAL OF NEUROSCIENCE RESEARCH, Issue 8 2009
L. Di Cesare Mannelli
Abstract Traumatic, infectious, metabolic, and chemical noxa to the nervous system are the etiology of a crippling disease generally termed neuropathy. Motor disorders, altered sensibility, and pain are the pathognomonic traits. Cellular alterations induced by this chronic pathology include mitochondrial dysfunctions that lead to the activation of the apoptotic cascade. Energy imbalance can compromise the maintenance of mitochondrial membrane potential, furthering the release of cytochrome C and the subsequent cleavage and activation of caspases. Chronic constriction injury (CCI) of the rat sciatic nerve is a neuropathy model able to induce a strong mitochondrial impairment with a consequent apoptotic induction. In this model, the acetylcholinesterase inhibitor physostigmine is administered at 0.125 mg/kg i.p. (twice per day) starting from the operation and for 15 days after. The cholinergic activation reduces cytosolic levels of cytochrome C, suggesting an improved stability of the mitochondrial membrane, and the expression level of the active caspase 3 fragments (19, 16 kDa) is reduced significantly with respect to saline treatment. Accordingly, physostigmine impairs caspase 3 protease activity. In fact, the target of the activated caspase 3, the 89-kDa PARP fragment, is significantly less expressed in the ligated nerve of physostigmine-treated rats, reaching levels that are comparable to those in the contralateral unligated nerve. Finally, this natural acetylcholinesterase inhibitor reduces DNA fragmentation both in the proximal and in the distal parts of the nerve. This protection correlates with the induction of XIAP. Therefore, apoptosis, central to tissue degeneration, is prevented by repeated physostigmine treatment of CCI animals. © 2009 Wiley-Liss, Inc. [source]


Axon-Schwann cell interactions regulate the expression of fibroblast growth factor-5 (FGF-5)

JOURNAL OF NEUROSCIENCE RESEARCH, Issue 1 2001
Marina Scarlato
Abstract We screened for genes whose expression is significantly up- or downregulated during Wallerian degeneration in adult rat sciatic nerve with cDNA arrays. Fibroblast growth factor-5 (FGF-5) mRNA seemed to be induced. This was confirmed by northern blotting and in situ hybridization, as well as Western blotting for FGF-5 in axotomized nerve. Axon-Schwann cell interactions decreased the steady-state level of FGF-5 mRNA in regenerating sciatic nerves, and forskolin diminished its expression in cultured Schwann cells. We conclude that denervated Schwann cells synthesize FGF-5, which is a secreted, neuronotrophic member of the FGF family. J. Neurosci. Res. 66:16,22, 2001. © 2001 Wiley-Liss, Inc. [source]


Novel Polysaccharide-derived hydrogel prevents perineural adhesions in a rat model of sciatic nerve adhesion

JOURNAL OF ORTHOPAEDIC RESEARCH, Issue 3 2010
Michiro Yamamoto
Abstract We investigated the effects of a novel carboxymethylcellulose (CMC)-derived hydrogel, in which phosphatidylethanolamine (PE) was introduced into the carboxyl groups of CMC, for preventing perineural adhesion after extensive internal neurolysis of rat sciatic nerve. Sciatic nerves were randomly assigned to one of the following groups: the Control group, operated but no treatment; the HA group, operated and treated with 1% hyaluronan; the CMC,PE(L) group, operated and treated with low-viscosity CMC,PE hydrogel; and the CMC,PE(H) group, operated and treated with high-viscosity CMC,PE hydrogel. Perineural adhesions were evaluated at 6 weeks. Nerves were also subjected to biomechanical testing to assess ultimate breaking strength. Electrophysiological and wet muscle weight measurements were performed. Breaking strengths were significantly lower for the CMC,PE(L) group than for the Control and HA groups. Latency was significantly longer for the Control group than for the CMC,PE(L) group at 20 days. The mean percentage of wet muscle weight to body weight was significantly lower for the Control group than for the CMC,PE(L) group at 6 weeks. Low-viscosity CMC,PE hydrogel appears to prevent perineural adhesions and allow early restoration of nerve function. © 2009 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 28:284,288, 2010 [source]


Peripheral nerve regeneration in cell adhesive peptide incorporated collagen tubes in rat sciatic nerve , early and better functional regain

JOURNAL OF THE PERIPHERAL NERVOUS SYSTEM, Issue 4 2005
Mohamed Rafiuddin Ahmed
[source]


Investigating mechanical behaviour at a core,sheath interface in peripheral nerve

JOURNAL OF THE PERIPHERAL NERVOUS SYSTEM, Issue 4 2004
Rachel L. Tillett
Abstract As peripheral nerves bend and stretch, internal elements need to move in relation to each other. However, the way in which intraneural components interact is poorly understood. Previous work identified a distinct core and sheath in the rat sciatic nerve and provides a useful model with which to investigate this interaction. Here we have focused on identifying the mechanical and anatomical characteristics of the interface between core and sheath. Nerve samples, 15 and 20 mm long, of rat sciatic nerves were harvested and placed in a purpose-built jig, and a tensile testing machine was used to pull core from sheath. Mechanical tests of specimens in which core had been previously pulled from sheath by 25% of its initial length achieved a mean pull-out force approximately six times smaller than that achieved using intact controls. These results are consistent with the proposal that core,sheath interactions involve physical connections rather than a viscous fluid interface. Anatomical features of this interface were characterised using transmission electron microscopy. It appeared that sheath was derived from epineurium and most of the perineurium, whilst core consisted of endoneurium and a small proportion of the perineurium: the plane of cleavage appeared to involve the innermost perineurial cell layer. [source]


Role of axon-deprived Schwann cells in perineurial regeneration in the rat sciatic nerve

NEUROPATHOLOGY & APPLIED NEUROBIOLOGY, Issue 3 2000
M. Popovi
The role of Schwann cells (SC) in perineurial regeneration after nerve injury has not yet been resolved. It was hypothesized that SC alone are able to induce at least partial morphological restoration of the destroyed orthotopic perineureum (PN). To test the hypothesis, a permanently denervated segment of the rat sciatic nerve was made acellular by freeze-thawing, except in its most proximal part where non-neuronal cells were left intact. Restoration of the frozen segment by these cells was examined by electron microscopy and immunohistochemistry of the SC marker, S-100 protein, 4 and 8 weeks after injury. The PN regenerated from undifferentiated fibroblast-like cells. In the presence of migrant SC without axons, regenerated cells in the place of the former PN were stacked in several layers and, in accordance with the hypothesis, partially expressed typical features of the perineurial cells (PC): pinocytotic vesicles, short fragments of basal lamina and tight junctions. Migrant SC induced formation of pseudo-minifascicles even in the epineurium. In these, SC organized the adjacent fibroblasts into a multilayered circular sheath, and induced their partial differentiation towards perineurial cells. Further experiments demonstrated that regenerating axons are required for complete morphological differentiation of the regenerated perineurial cells either in the orthotopic PN or in minifascicles. [source]


Highly Permeable Genipin-Cross-linked Gelatin Conduits Enhance Peripheral Nerve Regeneration

ARTIFICIAL ORGANS, Issue 12 2009
Ju-Ying Chang
Abstract Here we have evaluated peripheral nerve regeneration with a porous biodegradable nerve conduit (PGGC), which was made from genipin-cross-linked gelatin. To examine the effect of pores, nonporous genipin-cross-linked gelatin conduit (GGC) was considered as the control. Both the PGGC and the GGC were dark blue in appearance with a concentric and round lumina. The PGGC featured an outer surface with pores of variable size homogeneously traversing, and a partially fenestrated inner surface connected by an open trabecular meshwork. The GGC had a rough outer surface whereas its inner lumen was smooth. Both PGGCs and GGCs had similar hydrophilicity on condition of the same material and cross-linking degree. The porosity of PGGCs and GGCs was 90.8 ± 0.9% and 24.3 ± 2.9%, respectively. The maximum tensile force of the GGCs (0.12 ± 0.06 kN) exceeded that of the PGGCs (0.03 ± 0.01 kN), but the PGGCs had a higher swelling ratio than GGCs at 0.5, 1, 3, 6, 12, 24, 48, 60, 72, and 84 h after soaking in deionized water. Cytotoxic testing revealed the soaking solutions of both of the tube composites would not produce cytotoxicity to cocultured Schwann cells. After subcutaneous implantation on the dorsal side of the rat, the PGGC was degraded completely after 12 weeks of implantation whereas a thin tissue capsule was formed encapsulating the partially degraded GGC. Biodegradability of both of the tube groups and their effectiveness as a guidance channel were examined as they were used to repair a 10 mm gap in the rat sciatic nerve. As a result, fragmentation of the GGC was still seen after 12 weeks of implantation, yet the PGGC had been completely degraded. Histological observation showed that numerous myelinated axons had crossed over the gap region in the PGGCs after 8 weeks of implantation despite only few myelinated axons and unmyelinated axons mostly surrounded by Schwann cells seen in the GGCs. In addition, the regenerated nerves in the PGGCs presented a significantly higher nerve conductive velocity than those in the GGCs (P < 0.05). Thus, the PGGCs can not only offer effective aids for regenerating nerves but also accelerate favorable nerve functional recovery compared with the GGCs. [source]


Effect of weak, interrupted sinusoidal low frequency magnetic field on neural regeneration in rats: Functional evaluation

BIOELECTROMAGNETICS, Issue 5 2005
Marijan Bervar
Abstract A study of the effect of weak, interrupted sinusoidal low frequency magnetic field (ISMF) stimulation on regeneration of the rat sciatic nerve was carried out. In the experiment, 60 Wistar rats were used: 24 rats underwent unilateral sciatic nerve transection injury and immediate surgical nerve repair, 24 rats underwent unilateral sciatic nerve crush injury, and the remaining 12 rats underwent a sham surgery. Half of the animals (n,=,12) with either sciatic nerve lesion were randomly chosen and exposed between a pair of Helmholtz coils for 3 weeks post-injury, 4 h/day, to an interrupted (active period to pause ratio,=,1.4 s/0.8 s) sinusoidal 50 Hz magnetic field of 0.5 mT. The other half of the animals (n,=,12) and six rats with sham surgery were used for two separate controls. Functional recovery was followed for 6 weeks for the crush injuries and 7½ months for the transection injuries by video assisted footprint analysis in static conditions and quantified using a recently revised static sciatic index (SSI) formula. We ascertained that the magnetic field influence was weak, but certainly detectable in both injury models. The accuracy of ISMF influence detection, determined by the one-way repeated measures ANOVA test, was better for the crush injury model: F(1, 198),=,9.0144, P,=,.003, than for the transection injury model: F(1, 198),=,6.4826, P,=,.012. The Student,Newman,Keuls range test for each response day yielded significant differences (P,<,.05) between the exposed and control groups early in the beginning of functional recovery and later on from the points adjacent to the beginning of the plateau, or 95% of functional recovery, and the end of observation. These differences probably reflect the ISMF systemic effect on the neuron cell bodies and increased and more efficient reinnervation of the periphery. Bioelectromagnetics 26:351,356, 2005. © 2005 Wiley-Liss, Inc. [source]


Fabrication and Evaluation of Chitin-Based Nerve Guidance Conduits Used to Promote Peripheral Nerve Regeneration,

ADVANCED ENGINEERING MATERIALS, Issue 11 2009
Yumin Yang
Chitin product was prepared from the chitosan counterpart and both were found to be equally biocompatible with cultured Schwann cells. Chitin- and chitosan-based nerve guidance conduits (NGCs) were surgically implanted to bridge 10-mm-long neural defects in rat sciatic nerves. The regenerative outcome provided positive evidence that chitin- and chitosan-based NGCs produce the similar beneficial effects on peripheral nerve regeneration. [source]


Thyroid hormone enhances transected axonal regeneration and muscle reinnervation following rat sciatic nerve injury

JOURNAL OF NEUROSCIENCE RESEARCH, Issue 8 2010
Petrica-Adrian Panaite
Abstract Improvement of nerve regeneration and functional recovery following nerve injury is a challenging problem in clinical research. We have already shown that following rat sciatic nerve transection, the local administration of triiodothyronine (T3) significantly increased the number and the myelination of regenerated axons. Functional recovery is a sum of the number of regenerated axons and reinnervation of denervated peripheral targets. In the present study, we investigated whether the increased number of regenerated axons by T3-treatment is linked to improved reinnervation of hind limb muscles. After transection of rat sciatic nerves, silicone or biodegradable nerve guides were implanted and filled with either T3 or phosphate buffer solution (PBS). Neuromuscular junctions (NMJs) were analyzed on gastrocnemius and plantar muscle sections stained with rhodamine ,-bungarotoxin and neurofilament antibody. Four weeks after surgery, most end-plates (EPs) of operated limbs were still denervated and no effect of T3 on muscle reinnervation was detected at this stage of nerve repair. In contrast, after 14 weeks of nerve regeneration, T3 clearly enhanced the reinnervation of gastrocnemius and plantar EPs, demonstrated by significantly higher recovery of size and shape complexity of reinnervated EPs and also by increased acetylcholine receptor (AChRs) density on post synaptic membranes compared to PBS-treated EPs. The stimulating effect of T3 on EP reinnervation is confirmed by a higher index of compound muscle action potentials recorded in gastrocnemius muscles. In conclusion, our results provide for the first time strong evidence that T3 enhances the restoration of NMJ structure and improves synaptic transmission. © 2010 Wiley-Liss, Inc. [source]


Investigating mechanical behaviour at a core,sheath interface in peripheral nerve

JOURNAL OF THE PERIPHERAL NERVOUS SYSTEM, Issue 4 2004
Rachel L. Tillett
Abstract As peripheral nerves bend and stretch, internal elements need to move in relation to each other. However, the way in which intraneural components interact is poorly understood. Previous work identified a distinct core and sheath in the rat sciatic nerve and provides a useful model with which to investigate this interaction. Here we have focused on identifying the mechanical and anatomical characteristics of the interface between core and sheath. Nerve samples, 15 and 20 mm long, of rat sciatic nerves were harvested and placed in a purpose-built jig, and a tensile testing machine was used to pull core from sheath. Mechanical tests of specimens in which core had been previously pulled from sheath by 25% of its initial length achieved a mean pull-out force approximately six times smaller than that achieved using intact controls. These results are consistent with the proposal that core,sheath interactions involve physical connections rather than a viscous fluid interface. Anatomical features of this interface were characterised using transmission electron microscopy. It appeared that sheath was derived from epineurium and most of the perineurium, whilst core consisted of endoneurium and a small proportion of the perineurium: the plane of cleavage appeared to involve the innermost perineurial cell layer. [source]


In vitro and in vivo evaluation of a biodegradable chitosan,PLA composite peripheral nerve guide conduit material

MICROSURGERY, Issue 6 2008
Feng Xie M.D., Ph.D.
Chitosan, a nature biodegradable material, has good biocompatibility but poor physical properties to serve as a nerve conduit. In this study, polylactic acid (PLA) was added to chitosan to form a composite material with improved intensity and elasticity, to be used as nerve conduits. The chitosan,PLA nerve conduits were fabricated with a mold casting/infrared dehydration technique. The constituent ratio of PLA and chitosan of 1:5 (v:v) was chosen to give the composite material both good mechanical properties and good biocompatibility. An in vitro cytotoxicity test showed that the chitosan,PLA material was not cytotoxic. The conduits were proved biodegradable and had many micropores to allow permeability. We evaluated chitosan,PLA nerve conduits as a guidance channel to repair 10 mm gaps in rat sciatic nerves. Nerve autograft and silicon conduits were used as the control. After 12 weeks, the regenerating nerves in three groups succeeded in passing through the nerve gap and reinnervating the muscle. Assessments, including ECG, histomorphometric evaluation, and weighing of triceps calf muscle, showed that the functional recovery of sciatic nerve was better in chitosan,PLA conduit group than in the silicon conduit group (P < 0.05), but the differences between the chitosan,PLA conduit group and the nerve autograft group were not significant (P > 0.05). Therefore, the chitosan,PLA guide proved to be a promising nerve conduit. © 2008 Wiley-Liss, Inc. Microsurgery, 2008. [source]


Inside-out vein graft and inside-out artery graft in rat sciatic nerve repair

MICROSURGERY, Issue 1 2003
Alécio Santos Barcelos Ph.D.
Although veins and arteries present similar wall structures, there are differences which may be relevant in peripheral nerve reconstruction. Inside-out vein grafts (IOVG) have been satisfactorily used to repair both motor and sensitive nerves. However, the inside-out artery graft (IOAG) is a new technique and not fully investigated. Our study presents comparative morphological data on nerve regeneration achieved with IOVG and IOAG in the repair of Wistar rat sciatic nerves. Jugular veins and aorta arteries were harvested from donor animals and used "inside-out" to bridge a 10-mm gap. Animals were sacrificed at 10 weeks to evaluate nerve regeneration. Both techniques presented great variability in nervous tissue, though some animals showed satisfactory results. Different intensities of scarring processes might have interfered with nerve regeneration. Although IOVG and IOAG techniques showed similar morphometric results, in general, IOVG presented a closer-to-normal nerve organization than IOAG. © 2003 Wiley-Liss, Inc. MICROSURGERY 23:66,71 2003 [source]