Home About us Contact | |||
Rat Nucleus Accumbens (rat + nucleus_accumben)
Selected AbstractsContext-specific modulation of cocaine-induced locomotor sensitization and ERK and CREB phosphorylation in the rat nucleus accumbensEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 10 2009Marcelo T. Marin Abstract Learned associations are hypothesized to develop between drug effects and contextual stimuli during repeated drug administration to produce context-specific sensitization that is expressed only in the drug-associated environment and not in a non-drug-paired environment. The neuroadaptations that mediate such context-specific behavior are largely unknown. We investigated context-specific modulation of cAMP-response element-binding protein (CREB) phosphorylation and that of four upstream kinases in the nucleus accumbens that phosphorylate CREB, including extracellular signal-regulated kinase (ERK), cAMP-dependent protein kinase, calcium/calmodulin-dependent kinase (CaMK) II and CaMKIV. Rats received seven once-daily injections of cocaine or saline in one of two distinct environments outside their home cages. Seven days later, test injections of cocaine or saline were administered in either the paired or the non-paired environment. CREB and ERK phosphorylation were assessed with immunohistochemistry, and phosphorylation of the remaining kinases, as well as of CREB and ERK, was assessed by western blotting. Repeated cocaine administration produced context-specific sensitized locomotor responses accompanied by context-specific enhancement of the number of cocaine-induced phosphoCREB-immunoreactive and phosphoERK-immunoreactive nuclei in a minority of neurons. In contrast, CREB and CaMKIV phosphorylation in nucleus accumbens homogenates were decreased by cocaine test injections. We have recently shown that a small number of cocaine-activated accumbens neurons mediate the learned association between cocaine effects and the drug administration environment to produce context-specific sensitization. Context-specific phosphorylation of ERK and CREB in the present study suggests that this signal transduction pathway is selectively activated in the same set of cocaine-activated accumbens neurons that mediate this learned association. [source] Long-lasting up-regulation of orexin receptor type 2 protein levels in the rat nucleus accumbens after chronic cocaine administrationJOURNAL OF NEUROCHEMISTRY, Issue 1 2007Guo-Chi Zhang Abstract Hypothalamic orexin (hypocretin) neurons project to the key structures of the limbic system and orexin receptors, both orexin receptor type 1 (OXR1) and type 2 (OXR2), are expressed in most limbic regions. Emerging evidence suggests that orexin is among important neurotransmitters that regulate addictive properties of drugs of abuse. In this study, we examined the effect of psychostimulant cocaine on orexin receptor protein abundance in the rat limbic system in vivo. Intermittent administration of cocaine (20 mg/kg, i.p., once daily for 5 days) caused a typical behavioral sensitization response to a challenge cocaine injection at a 14-day withdrawal period. Repeated cocaine administration at the same withdrawal time also increased OXR2 protein levels in the nucleus accumbens while repeated cocaine had no effect on OXR1 and orexin neuropeptide (both orexin-A and orexin-B) levels in this region. In contrast to the nucleus accumbens, OXR2 levels in the frontal cortex, the ventral tegmental area, the hippocampus, and the dorsal striatum (caudate putamen) were not altered by cocaine. Remarkably, the up-regulated OXR2 levels in the nucleus accumbens showed a long-lasting nature as it persisted up to 60 days after the discontinuation of repeated cocaine treatments. In contrast to chronic cocaine administration, an acute cocaine injection was insufficient to modify levels of any orexin receptor and peptide. Our data identify the up-regulation of OXR2 in the nucleus accumbens as an enduring molecular event that is correlated well with behavioral plasticity in response to chronic psychostimulant administration. This OXR2 up-regulation may reflect a key adaptation of limbic orexinergic transmission to chronic drug exposure and may thus be critical for the expression of motor plasticity. [source] Implication of Rho-associated kinase in the elevation of extracellular dopamine levels and its related behaviors induced by methamphetamine in ratsJOURNAL OF NEUROCHEMISTRY, Issue 2 2003Minoru Narita Abstract A growing body of evidence suggests that several protein kinases are involved in the expression of pharmacological actions induced by a psychostimulant methamphetamine. The present study was designed to investigate the role of the Rho/Rho-associated kinase (ROCK)-dependent pathway in the expression of the increase in extracellular levels of dopamine in the nucleus accumbens and its related behaviors induced by methamphetamine in rats. Methamphetamine (1 mg/kg, subcutaneously) produced a substantial increase in extracellular levels of dopamine in the nucleus accumbens, with a progressive augmentation of dopamine-related behaviors including rearing and sniffing. Methamphetamine also induced the decrease in levels of its major metabolites, 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanilic acid (HVA). Both the increase in extracellular levels of dopamine and the induction of dopamine-related behaviors by methamphetamine were significantly suppressed by pretreatment with an intranucleus accumbens injection of a selective ROCK inhibitor Y-27632. In contrast, Y-27632 had no effect on the decrease in levels of DOPAC and HVA induced by methamphetamine. Under these conditions, there were no changes in protein levels of membrane-bound RhoA in the nucleus accumbens following methamphetamine treatment. It is of interest to note that the microinjection of Y-27632 into the nucleus accumbens failed to suppress the increases in extracellular levels of dopamine, DOPAC, and HVA in the nucleus accumbens induced by subcutaneous injection of a prototype of µ-opioid receptor agonist morphine (10 mg/kg). Furthermore, perfusion of a selective blocker of voltage-dependent Na+ channels, tetrodotoxin (TTx) into the rat nucleus accumbens did not affect the increase in extracellular levels of dopamine in the rat nucleus accumbens by methamphetamine, whereas the morphine-induced dopamine elevation was eliminated by this application of TTx. The extracellular level of dopamine in the nucleus accumbens was also increased by perfusion of a selective dopamine re-uptake inhibitor 1-[2-[bis(4-fluorophenyl)methoxy]-4-(3-phenylpropyl)piperazine (GBR-12909) in the nucleus accumbens. This effect was not affected by pretreatment with intranucleus accumbens injection of Y-27632. These findings provide first evidence that Rho/ROCK pathway in the nucleus accumbens may contribute to the increase in extracellular levels of dopamine in the nucleus accumbens evoked by a single subcutaneous injection of methamphetamine. In contrast, this pathway is not essential for the increased level of dopamine in this region induced by morphine, providing further evidence for the different mechanisms of dopamine release by methamphetamine and morphine in rats. [source] Repeated administration of the selective kappa-opioid receptor agonist U-69593 increases stimulated dopamine extracellular levels in the rat nucleus accumbensJOURNAL OF NEUROSCIENCE RESEARCH, Issue 2 2006José Antonio Fuentealba Abstract Reinforcing properties of drugs of abuse are reduced by the coadministration of kappa opioid receptor (KOR) agonists. This effect is related to the inhibition of dopamine (DA) release in the nucleus accumbens (NAc) produced by the acute administration of KOR agonists. The present study was undertaken to investigate the in vivo effect of the repeated administration of KOR agonist on extracellular DA levels in the NAc. Rats were injected once daily with the selective KOR agonist U-69593 (0.16,0.32 mg/kg) or vehicle for 4 days. Microdialysis studies assessing extracellular concentration of DA in the NAc under basal and K+ -stimulatory conditions were conducted 1 day later. The microdialysis studies revealed that preexposure to U-69593 had no effect on basal extracellular DA levels but significantly augmented the amount of extracellular DA induced by high K+ compared with vehicle pretreated rats. The D2 receptor agonist quinpirole perfused through the dialysis probe in the NAc, although it produced a significant decrease on basal and K+ -stimulated DA levels in control rats, it did not decrease significantly either basal or K+ -stimulated DA levels in U-69593 preexposed rats. Preexposure to U-69593 did not alter the expression of tyrosine hydroxylase or dopamine transporter in the ventral tegmental area. These results show that repeated administration of U-696593 increases the amount of extracellular DA induced by high K in the NAc, an effect that may be related to decreased D2 autoreceptor function. It is suggested that repeated activation of KOR changes the response status of dopaminergic neurons in the NAc. © 2006 Wiley-Liss, Inc. [source] A Microdialysis Profile of Dynorphin A1,8 Release in the Rat Nucleus Accumbens Following Alcohol AdministrationALCOHOLISM, Issue 6 2006Peter W. Marinelli Background: Pharmacological studies have implicated the endogenous opioid system in mediating alcohol intake. Other evidence has shown that alcohol administration can influence endorphinergic and enkephalinergic activity, while very few studies have examined its effect on dynorphinergic systems. The aim of the present study was to investigate the effect of alcohol administration or a mechanical stressor on extracellular levels of dynorphin A1,8 in the rat nucleus accumbens,a brain region that plays a significant role in the processes underlying reinforcement and stress. Methods: Male Sprague,Dawley rats were implanted with a microdialysis probe aimed at the shell region of the nucleus accumbens. Artificial cerebrospinal fluid was pumped at a rate of 1.5 ,L/min in awake and freely moving animals and the dialysate was collected at 30-minute intervals. In one experiment, following a baseline period, rats were injected intraperitoneally with either physiological saline or 1 of 3 doses of alcohol, 0.8, 1.6, or 3.2 g ethanol/kg body weight. In a second experiment, following a baseline period, rats were applied a clothespin to the base of their tail for 20 minutes. The levels of dynorphin A1,8 in the dialysate were analyzed with solid-phase radioimmunoassay. Results: Relative to saline-treated controls, an alcohol dose of 1.6 and 3.2 g/kg caused a transient increase in the extracellular levels of dynorphin A1,8 in the first 30 minutes of alcohol administration. However, the effect resulting from the high 3.2 g/kg dose was far more pronounced and more significant than with the moderate dose. There was no effect of tail pinch on dynorphin A1,8 levels in the nucleus accumbens. Conclusions: In this experiment, a very high dose of alcohol was especially capable of stimulating dynorphin A1,8 release in the nucleus accumbens. Dynorphin release in the accumbens has been previously associated with aversive stimuli and may thus reflect a system underlying the aversive properties of high-dose alcohol administration. However, the lack of effect of tail-pinch stress in the present study suggests that dynorphin A1,8 is not released in response to all forms of stressful/aversive stimuli. [source] Intermittent administration of morphine alters protein expression in rat nucleus accumbensPROTEINS: STRUCTURE, FUNCTION AND BIOINFORMATICS, Issue 6 2006Ka Wan Li Dr. Abstract Repeated exposure to drugs of abuse causes time-dependent neuroadaptive changes in the mesocorticolimbic system of the brain that are considered to underlie the expression of major behavioral characteristics of drug addiction. We used a 2-D gel-based proteomics approach to examine morphine-induced temporal changes in protein expression and/or PTM in the nucleus accumbens (NAc) of morphine-sensitized rats. Rats were pretreated with saline [1,mL/kg subcutaneously (s.c.)] or morphine (10,mg/kg, s.c.) once daily for 14,days and the animals were decapitated 1,day later. The NAc was extracted and proteins resolved by 2-DE. Several protein functional groups were found to be regulated in the morphine-treated group, representing cytoskeletal proteins, proteins involved in neurotransmission, enzymes involved in energy metabolism and protein degradation, and a protein that regulates translation. [source] |