Rat Medial Gastrocnemius Muscle (rat + medial_gastrocnemius_muscle)

Distribution by Scientific Domains


Selected Abstracts


Changes in the contractile properties of motor units in the rat medial gastrocnemius muscle after one month of treadmill training

ACTA PHYSIOLOGICA, Issue 4 2008
M. Pogrzebna
Abstract Aim:, The influence of 4 weeks treadmill training on the contractile properties of motor units (MUs) in the rat medial gastrocnemius muscle was investigated. Methods:, A population of 18 Wistar rats was divided into two groups: trained on a treadmill (n = 7, locomotion speed 27 cm s,1, 1 km daily, 5 days a week, for 4 weeks) and control (n = 11). The contractile properties of isolated MUs were studied. Functional isolation of units was achieved by electrical stimulation of filaments of the ventral roots. A total of 299 MUs were investigated (142 in the control group and 157 in the trained group). They were divided into fast fatigable (FF), fast resistant to fatigue (FR) and slow (S). Their proportions and parameters of contractions were analysed. Results:, Following training, the number of FF units decreased and the number of FR units increased. The distribution of the fatigue index changed within these two types of fast units. The twitch and tetanus forces increased considerably in fast MUs, mainly in those of the FF type. The contraction and relaxation times shortened in the FR and S MUs. The steep part of the force,frequency curves shifted towards higher stimulation frequencies in FR and S units, while in FF units the shift was in the opposite direction. Conclusion:, The significant change in the proportions of fast MUs following training indicates FF to FR transformation. The various effects of training seen in the different MU types help explain the rationale behind mixed training. [source]


Metabolic cost of lengthening, isometric and shortening contractions in maximally stimulated rat skeletal muscle

ACTA PHYSIOLOGICA, Issue 2 2004
J. G. M. Beltman
Abstract Aim:, The present study investigated the energy cost of lengthening, isometric and shortening contractions in rat muscle (n = 19). Methods:, With electrical stimulation the rat medial gastrocnemius muscle was maximally stimulated to perform 10 lengthening, isometric and shortening contractions (velocity 25 mm s,1) under experimental conditions (e.g. temperature, movement velocity) that resemble conditions in human movement. Results:, Mean ± SD force,time-integral of the first contraction was significantly different between the three protocols, 2.4 ± 0.2, 1.7 ± 0.2 and 1.0 ± 0.2 N s, respectively (P < 0.05). High-energy phosphate consumption was not significantly different between the three modes of exercise but a trend could be observed from lengthening (7.7 ± 2.7 ,mol , P muscle,1) to isometric (8.9 ± 2.2 ,mol , P muscle,1) to shortening contractions (10.4 ± 1.6 ,mol , P muscle,1). The ratio of high-energy phosphate consumption to force,time-integral was significantly lower for lengthening [0.3 ± 0.1 ,mol , P (N s),1] and isometric [0.6 ± 0.2 ,mol , P (N s),1] contractions compared with shortening [1.2 ± 0.2 ,mol , P (N s),1] contractions (P < 0.05). Conclusion:, The present results of maximally stimulated muscles are comparable with data in the literature for voluntary human exercise showing that the energy cost of force production during lengthening exercise is ,30% of that in shortening exercise. The present study suggests that this finding in humans probably does reflect intrinsic muscle properties rather than effects of differential recruitment and/or coactivation. [source]


Changes in contractile properties of motor units of the rat medial gastrocnemius muscle after spinal cord transection

EXPERIMENTAL PHYSIOLOGY, Issue 5 2006
Jan Celichowski
The effects of complete transection of the spinal cord at the level of Th9/10 on contractile properties of the motor units (MUs) in the rat medial gastrocnemius (MG) muscle were investigated. Our results indicate that 1 month after injury the contraction time (time-to-peak) and half-relaxation time were prolonged and the maximal tetanic force in most of the MUs in the MG muscle of spinal rats was reduced. The resistance to fatigue also decreased in most of the MUs in the MG of spinal animals. Moreover, the post-tetanic potentiation of twitches in MUs diminished after spinal cord transection. Criteria for the division of MUs into three types, namely slow (S), fast fatigue resistant (FR) and fast fatigable (FF), applied in intact animals, could not be directly used in spinal animals owing to changes in contractile properties of MUs. The ,sag' phenomenon observed in unfused tetani of fast units in intact animals essentially disappeared in spinal rats and it was only detected in few units, at low frequencies of stimulation only. Therefore, the MUs in spinal rats were classified as fast or slow on the basis of an adjusted borderline of 20 ms, instead of 18 ms as in intact animals, owing to a slightly longer contraction time of those fast motor units with the ,sag'. We conclude that all basic contractile properties of rat motor units in the medial gastrocnemius muscle are significantly changed 1 month after complete spinal cord transection, with the majority of motor units being more fatigable and slower than those of intact rats. [source]