Rat Liver Mitochondria (rat + liver_mitochondria)

Distribution by Scientific Domains

Kinds of Rat Liver Mitochondria

  • isolated rat liver mitochondria


  • Selected Abstracts


    The Effects of Ecstasy (MDMA) on Rat Liver Bioenergetics

    ACADEMIC EMERGENCY MEDICINE, Issue 7 2004
    Daniel E. Rusyniak MD
    Abstract Objectives: Use of the drug ecstasy (3,4-methylenedioxymethamphetamine [MDMA]) can result in life-threatening hyperthermia. Agents that uncouple mitochondrial oxidative phosphorylation are known to cause severe hyperthermia. In the present study, the authors tested the hypothesis that MDMA directly uncouples oxidative phosphorylation in rat liver mitochondria. Methods: Effects on mitochondrial bioenergetics were assessed both in vitro and ex vivo. In vitro studies consisted of measuring the effects of MDMA (0.1,5.0 mmol/L) on states of respiration in isolated rat liver mitochondria and on mitochondrial membrane potential in a rat liver cell line. In ex vivo studies, mitochondrial rates of respiration were measured in the livers of rats one hour after treatment with MDMA (40 mg/kg subcutaneously). Results: With the in vitro mitochondrial preparations, only concentrations of 5 mmol/L MDMA showed evidence of uncoupling with a slight increase in state 4 respiration and a corresponding decrease in the respiratory control index. MDMA (0.1,5.0 mmol/L) failed to decrease the mitochondrial membrane potential in 3,3-dihexyloxacarbocyanide iodide,stained WB-344 cells after either one or 24 hours of incubation. Ex vivo rates of respiration obtained from the livers of rats one hour after treatment with MDMA (40 mg/kg subcutaneously) showed no evidence of mitochondrial uncoupling. Conclusions: These data suggest that while high concentrations of MDMA have some mild uncoupling effects in isolated mitochondria, these effects do not translate to cell culture or ex vivo studies in treated animals. These data do not support the view that the hyperthermia induced by MDMA is from a direct effect on mitochondrial oxidative phosphorylation. [source]


    An in vitro study of the interaction of sea-nine® with rat liver mitochondria

    ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 5 2005
    Marcantonio Bragadin
    Abstract The interactions of the antifouling compound Sea-Nine® with rat liver mitochondria have been studied. The results indicate that low doses of this compound inhibit adenosine 5,-triphosphate (ATP) synthesis. Further investigations indicate that ATP synthesis inhibition should be due to an interaction of Sea-Nine with the succinic dehydrogenase in the mitochondrial respiratory chain. [source]


    Chromokinetics of metabolic pathways

    FEBS JOURNAL, Issue 13 2004
    Jörg W. Stucki
    Some methods to study and intuitively understand steady-state flows in complicated metabolic pathways are discussed. For this purpose, a suitable decomposition of complex metabolic schemes into smaller subsystems is used. These independent subsystems are then interpreted as basic colors of a chromatic coloring scheme. The mixture of these basic colors allows an intuitive picture of how a steady state in a metabolic pathway can be understood. Furthermore, actions of drugs can be more easily investigated on this basis. An anaerobic variant of pyruvate metabolism in rat liver mitochondria is presented as a simple example. This experiment allows measurement of the percentage that each basic color contributes to the steady states resulting from different experimental conditions. Possible implementations of existing algorithms and rational design of new drugs are discussed. A mathematica program, based on a new algorithm for finding all basic colors of stoichiometric networks, is included. [source]


    A folding variant of human ,-lactalbumin induces mitochondrial permeability transition in isolated mitochondria

    FEBS JOURNAL, Issue 1 2001
    Camilla Köhler
    A human milk fraction containing multimeric ,-lactalbumin (MAL) is able to kill cells via apoptosis. MAL is a protein complex of a folding variant of ,-lactalbumin and lipids. Previous results have shown that upon treatment of transformed cells, MAL localizes to the mitochondria and cytochrome c is released into the cytosol. This is followed by activation of the caspase cascade. In this study, we further investigated the involvement of mitochondria in apoptosis induced by the folding variant of ,-lactalbumin. Addition of MAL to isolated rat liver mitochondria induced a loss of the mitochondrial membrane potential (,,m), mitochondrial swelling and the release of cytochrome c. These changes were Ca2+ -dependent and were prevented by cyclosporin A, an inhibitor of mitochondrial permeability transition. MAL also increased the rate of state 4 respiration in isolated mitochondria by exerting an uncoupling effect. This effect was due to the presence of fatty acids in the MAL complex because it was abolished completely by BSA. BSA delayed, but failed to prevent, mitochondrial swelling as well as dissipation of ,,m, indicating that the fatty acid content of MAL facilitated, rather than caused, these effects. Similar results were obtained with HAMLET (human ,-lactalbumin made lethal to tumour cells), which is native ,-lactalbumin converted in vitro to the apoptosis-inducing folding variant of the protein in complex with oleic acid. Our findings demonstrate that a folding variant of ,-lactalbumin induces mitochondrial permeability transition with subsequent cytochrome c release, which in transformed cells may lead to activation of the caspase cascade and apoptotic death. [source]


    Binding of rat brain hexokinase to recombinant yeast mitochondria

    FEBS JOURNAL, Issue 10 2000
    Identification of necessary physico-chemical determinants
    The association of rat brain hexokinase with heterologous recombinant yeast mitochondria harboring human porin (Yh) is comparable to that with rat liver mitochondria in terms of cation requirements, cooperativity in binding, and the effect of amphipathic compounds. Mg2+, which is required for hexokinase binding to all mitochondria, can be replaced by other cations. The efficiency of hexokinases, however, depends on the valence of hydrophilic cations, or the partition of hydrophobic cations in the membrane, implying that these act by reducing a prohibitive negative surface charge density on the outer membrane rather than fulfilling a specific structural requirement. Macromolecular crowding (using dextran) has dual effects. Dextran added in excess increases hexokinase binding to yeast mitochondria, according to the porin molecule they harbor. This effect, significant with wild-type yeast mitochondria, is only marginal with Yh as well as rat mitochondria. On the other hand, an increase in the number of hexokinase binding sites on mitochondria is also observed. This increase, moderate in wild-type organelles, is more pronounced with Yh. Finally, dextran, which has no effect on the modulation of hexokinase binding by cations, abolishes the inhibitory effect of amphipathic compounds. Thus, while hexokinase binding to mitochondria is predetermined by the porin molecule, the organization of the latter in the membrane plays a critical role as well, indicative that porin must associate with other mitochondrial components to form competent binding sites on the outer membrane. [source]


    Sensitivity of the 2-oxoglutarate carrier to alcohol intake contributes to mitochondrial glutathione depletion

    HEPATOLOGY, Issue 3 2003
    Olga Coll
    The mitochondrial pool of reduced glutathione (mGSH) is known to play a protective role against liver injury and cytokine-mediated cell death. However, the identification of the mitochondrial carriers involved in its transport in hepatocellular mitochondria remains unestablished. In this study, we show that the functional expression of the 2-oxoglutarate carrier from HepG2 cells in mitochondria from Xenopus laevis oocytes conferred a reduced glutathione (GSH) transport activity that was inhibited by phenylsuccinate, a specific inhibitor of the carrier. In addition, the mitochondrial transport of GSH and 2-oxoglutarate in isolated mitochondria from rat liver exhibited mutual competition and sensitivity to glutamate and phenylsuccinate. Interestingly, the kinetics of 2-oxoglutarate transport in rat liver mitochondria displayed a single Michaelis-Menten component with a Michaelis constant of 3.1 ± 0.3 mmol/L and maximum velocity of 1.9 ± 0.1 nmol/mg protein/25 seconds. Furthermore, the initial rate of 2-oxoglutarate was reduced in mitochondria from alcohol-fed rat livers, an effect that was not accompanied by an alcohol-induced decrease in the 2-oxoglutarate messenger RNA levels but rather by changes in mitochondrial membrane dynamics induced by alcohol. The fluidization of mitochondria by the fluidizing agent 2-(2-methoxyethoxy)ethyl 8-(cis-2-n-octylcyclopropyl) (A2C) restored the initial transport rate of both GSH and 2-oxoglutarate. Finally, these changes were reproduced in normal liver mitochondria enriched in cholesterol where the fluidization of cholesterol-enriched mitochondria with A2C restored the order membrane parameter and the mitochondrial 2-oxoglutarate uptake. In conclusion, these findings provide unequivocal evidence for 2-oxoglutarate as a GSH carrier and its sensitivity to membrane dynamics perturbation contributes in part to the alcohol-induced mGSH depletion. [source]


    Involvement of Ca2+ and ROS in ,-tocopheryl succinate-induced mitochondrial permeabilization

    INTERNATIONAL JOURNAL OF CANCER, Issue 8 2010
    Vladimir Gogvadze
    Abstract Release of mitochondrial proteins such as cytochrome c, AIF, Smac/Diablo etc., plays a crucial role in apoptosis induction. A redox-silent analog of vitamin E, ,-tocopheryl succinate (,-TOS), was shown to stimulate cytochrome c release via production of reactive oxygen species (ROS) and Bax-mediated permeabilization of the outer mitochondrial membrane. Here we show that ,-TOS facilitates mitochondrial permeability transition (MPT) in isolated rat liver mitochondria, Tet21N neuroblastoma cells and Jurkat T-lymphocytes. In particular, in addition to ROS production, ,-TOS stimulates rapid Ca2+ entry into the cells with subsequent accumulation of Ca2+ in mitochondria,a prerequisite step for MPT induction. Alteration of mitochondrial Ca2+ buffering capacity was observed as early as 8 hr after incubation with ,-TOS, when no activation of Bax was yet detected. Ca2+ accumulation in mitochondria was important for apoptosis progression, since inhibition of mitochondrial Ca2+ uptake significantly mitigated the apoptotic response. Importantly, Ca2+ -induced mitochondrial destabilization might cooperate with Bax-mediated mitochondrial outer membrane permeabilization to induce cytochrome c release from mitochondria. [source]


    The Endogenous Amine 1-Methyl-1,2,3,4- Tetrahydroisoquinoline Prevents the Inhibition of Complex I of the Respiratory Chain Produced by MPP+

    JOURNAL OF NEUROCHEMISTRY, Issue 1 2000
    Juan Parrado
    Abstract : The endogenous monoamine 1-methyl-1,2,3,4-tetrahydroisoquinoline has been shown to prevent the neurotoxic effect of MPP+ and other endogenous neurotoxins, which produce a parkinsonian-like syndrome in humans. We have tested its potential protective effect in vivo by measuring the protection of 1-methyl-1,2,3,4-tetrahydroisoquinoline in the neurotoxicity elicited by MPP+ in rat striatum by tyrosine hydroxylase immunocytochemistry. Because we know that cellular damage caused by MPP+ is primarily the result of mitochondrial respiratory inhibition at the complex I level, we have extended the study further to understand this protective mechanism. We found that the inhibitory effect on the mitochondrial respiration rate induced by MPP+ in isolated rat liver mitochondria and striatal synaptosomes was prevented by addition of 1-methyl-1,2,3,4-tetrahydroisoquinoline. This compound has no antioxidant capacity ; therefore, this property is not involved in its protective effect. Thus, we postulate that the preventive effect that 1-methyl-1,2,3,4-tetrahydroisoquinoline has on mitochondrial inhibition for MPP+ could be due to a "shielding effect," protecting the energetic machinery, thus preventing energetic failure. These results suggest that this endogenous amine may protect against the effect of several parkinsonism-inducing compounds that are associated with progressive impairment of the mitochondrial function. [source]