Home About us Contact | |||
Rat Islets (rat + islet)
Selected AbstractsMelatonin protects against streptozotocin, but not interleukin-1,-induced damage of rodent pancreatic ,-cellsJOURNAL OF PINEAL RESEARCH, Issue 3 2001Annika K. Andersson In the present study, we examined whether melatonin can protect rodent pancreatic islets against streptozotocin (STZ) and interleukin-1, (IL-1,)-induced suppression of ,-cell function. Formation of free radicals, DNA damage and extensive DNA repair leading to depletion of intracellular nicotinamide adenine dinucleotide (NAD) may mediate STZ toxicity. Activation of inducible nitric oxide synthase and nitric oxide (NO) formation may cause IL-1,-induced ,-cell impairment. We also studied the effect of melatonin against STZ-induced hyperglycemia in C57BL/Ks mice. For in vitro studies, cultured rat islets were exposed to melatonin (100 ,M,1 mM) 30 min prior to STZ (0.5 mM) or IL-1, (25 U/mL) addition. After an additional 30 min incubation with STZ, islet function and NAD content were analyzed either acutely or after 18 hr of recovery in fresh culture medium. For IL-1, experiments, islets were incubated for 48 hr with the cytokine before evaluation of islet function. We found that melatonin counteracted STZ-induced inhibition of glucose metabolism and insulin release in cultured rat islets after 18 hr of recovery. Moreover, NAD levels were higher in the melatonin-treated group at this time point. Melatonin had no effect on IL-1,-induced islet inhibition of glucose oxidation or NO formation. Diabetes induced by STZ (140 mg/kg body weight; i.v.) was effectively prevented by administration of melatonin (100 mg/kg body weight; i.p.) 30 min before STZ injection. We conclude that the protective effects of melatonin against ,-cell damage may be related to interference with DNA damage and poly(ADP-ribose) polymerase (PARP) activation rather than through effects on NO generation pathways. [source] Magnetic resonance imaging and biological properties of pancreatic islets labeled with iron oxide nanoparticlesNMR IN BIOMEDICINE, Issue 8 2009Hoe Suk Kim Abstract This study was undertaken to investigate the in vitro effect of islet labeling with iron oxide nanoparticles for MRI on islet viability, insulin secretion, and gene expression. Isolated rat islets were labeled with Resovist (25,200,µg Fe/mL, a clinically approved MRI contrast agent) in the presence or absence of poly- l -Lysine (PLL, 1.5,µg/mL) for 48,h. The iron content of labeled islets was found to increase in a dose-dependent manner. More than 90% of the islets were labeled with 100,µg Fe/mL. We confirmed the localizations of iron oxide nanoparticles within islet , -cells by insulin immunostaining. As the concentration of Resovist increased, T2 values as determined by T2 -weighted MRI on a 1.5,Tesla MR scanner decreased. Labeling of 100 islets in a medium containing 100,µg Fe/mL of Resovist in the absence of PLL provided sufficient contrast for islet visualization on T2 -weighted MRI. MTT assays showed that the viability of labeled islets was not different from that of unlabeled islets. No statistical difference was observed between labeled (2.91,±,0.36) and unlabeled islets (2.83,±,0.61) in terms of the ability to secrete insulin, as determined by the glucose stimulation index. We also evaluated the effect of iron oxide incorporation on the gene expressions in islet cells using RT-PCR (reverse transcriptase PCR). Insulin expression in labeled islets was significantly elevated (1.83,±,0.25 fold vs. unlabeled; p,=,0.005), but not the expression of somatostatin (1.39,±,0.18 fold vs. unlabeled; p,=,0.085) or glucagons (1.28,±,0.13 fold vs. unlabeled; p,=,0.09). Expression of an important transcription factor for insulin gene transcription, BETA2 (beta-cell E-box trans-activator), was increased in labeled islets (1.67,±,0.15 fold vs. unlabeled; p,=,0.029). The findings of this study indicate that Resovist provides a satisfactory means to image islets and has no deleterious effect on islet function or gene expression. Copyright © 2009 John Wiley & Sons, Ltd. [source] Proteomic and transcriptomic analysis for streptozotocin-induced diabetic rat pancreas in response to fungal polysaccharide treatmentsPROTEINS: STRUCTURE, FUNCTION AND BIOINFORMATICS, Issue 11 2008Sang Woo Kim Abstract In an attempt to search for novel biomarkers for monitoring diabetes prognosis, we examined the influence of the hypoglycemic fungal extracellular polysaccharides (EPS) on the differential change in pancreatic proteome and transcriptome in streptozotocin (STZ)-induced diabetic rats using 2-DE-based protein mapping and oligonucleotide microarray analysis. The 2-DE system separated more than 2000 individual spots, demonstrating that 34 proteins out of about 500 matched spots were differentially expressed. A total of 22 overexpressed and 12 underexpressed proteins in 2-DE map were observed (p<0.05) between the healthy and diabetic rats, of which 26 spots were identified by PMF analysis. Of these, significant down regulation of carbonyl reductase (Cbr), hydroxymethylglutaryl-CoA synthase (HMGCS), and putative human mitogen-activated protein kinase activator with WD repeats-binding protein (MAWDBP) in diabetic pancreas were reported for the first time in this study. When treated with EPS, all these four proteins were reverted to normal levels. The microarray analysis revealed that 96 out of 1272 genes were down- or up-regulated in the diabetic rats and the altered transcript levels of many of these genes were reversed after EPS treatment. In particular, ROS generation in rat islets was significantly increased after STZ treatment, thereafter EPS treatment was likely to play a preventive role in ,-cell destruction mediated by STZ. Taken together, EPS may act as a potent regulator of gene expression for a wide variety of genes in diabetic rats, particularly in antioxidative stress, insulin biosynthesis, and cell proliferation. [source] Bimodal role of conventional protein kinase C in insulin secretion from rat pancreatic , cellsTHE JOURNAL OF PHYSIOLOGY, Issue 1 2004Hui Zhang The present study was conducted to evaluate the role of conventional protein kinase C (PKC) in calcium-evoked insulin secretion. In rat , cells transfected with green fluorescent protein-tagged PKC-, (PKC-,,EGFP), a depolarizing concentration of potassium induced transient elevation of cytoplasmic free calcium ([Ca2+]c), which was accompanied by transient translocation of PKC-,,EGFP from the cytosol to the plasma membrane. Potassium also induced transient translocation of PKC-,,EGFP, the C1 domain of PKC-, and PKC-,,GFP. A high concentration of glucose induced repetitive elevation of [Ca2+]c and repetitive translocation of PKC-,,EGFP. Diazoxide completely blocked both elevation of [Ca2+]c and translocation of PKC-,,EGFP. We then studied the role of conventional PKC in calcium-evoked insulin secretion using rat islets. When islets were incubated for 10 min with high potassium, Gö-6976, an inhibitor of conventional PKC, and PKC-, pseudosubstrate fused to antennapedia peptide (Antp-PKC19,31) increased potassium induced secretion. Similarly, insulin release induced by high glucose for 10 min was enhanced by Gö-6976 and Antp-PKC19,31. However, when islets were stimulated for 60 min with high glucose, both Gö-6976 and Antp-PKC19,31 reduced glucose-induced insulin secretion. Similar results were obtained by transfection of dominant-negative PKC-, using adenovirus vector. Taken together, PKC-, is activated when cells are depolarized by a high concentration of potassium or glucose. Conventional PKC is inhibitory on depolarization-induced insulin secretion per se, but it also augments glucose-induced secretion. [source] Induction of Indoleamine 2,3-Dioxygenase by Gene Delivery in Allogeneic Islets Prolongs Allograft SurvivalAMERICAN JOURNAL OF TRANSPLANTATION, Issue 8 2010H. Dellê Indoleamine 2,3-dioxygenase (IDO), an enzyme that plays a critical role in fetomaternal tolerance, exerts immunoregulatory functions suppressing T-cell responses. The aims of this study were to promote IDO expression in rat islets using a nonviral gene transfer approach, and to analyze the effect of the in vivo induction of IDO in a model of allogeneic islet transplantation. The IDO cDNA was isolated from rat placenta, subcloned into a plasmid and transfected into rat islets using Lipofectamine. The efficiency of transfection was confirmed by qRT-PCR and functional analysis. The in vivo effect of IDO expression was analyzed in streptozotocin-induced diabetic Lewis rats transplanted with allogeneic islets under the renal capsule. Transplantation of IDO-allogeneic islets reversed diabetes and maintained metabolic control, in contrast to transplantation of allogeneic nontransfected islets, which failed shortly after transplantation in all animals. Graft survival of allograft islets transfected with IDO transplanted without any immunosuppression was superior to that observed in diabetic rats receiving nontransfected islets. These data demonstrated that IDO expression induced in islets by lipofection improved metabolic control of streptozotocin-diabetic rats and prolonged allograft survival. [source] Adhesion of pancreatic beta cells to biopolymer filmsBIOPOLYMERS, Issue 8 2009S. Janette Williams Abstract Dramatic reversal of Type 1 diabetes in patients receiving pancreatic islet transplants continues to prompt vigorous research concerning the basic mechanisms underlying patient turnaround. At the most fundamental level, transplanted islets must maintain viability and function in vitro and in vivo and should be protected from host immune rejection. Our previous reports showed enhancement of islet viability and insulin secretion per tissue mass for small islets (<125 ,m) as compared with large islets (>125 ,m), thus, demonstrating the effect of enhancing the mass transport of islets (i.e. increasing tissue surface area to volume ratio). Here, we report the facile dispersion of rat islets into individual cells that are layered onto the surface of a biopolymer film towards the ultimate goal of improving mass transport in islet tissue. The tightly packed structure of intact islets was disrupted by incubating in calcium-free media resulting in fragmented islets, which were further dispersed into individual or small groups of cells by using a low concentration of papain. The dispersed cells were screened for adhesion to a range of biopolymers and the nature of cell adhesion was characterized for selected groups by quantifying adherent cells, measuring the surface area coverage of the cells, and immunolabeling cells for adhesion proteins interacting with selected biopolymers. Finally, beta cells in suspension were centrifuged to form controlled numbers of cell layers on films for future work determining the mass transport limitations in the adhered tissue constructs. © 2009 Wiley Periodicals, Inc. Biopolymers 91: 676,685, 2009. This article was originally published online as an accepted preprint. The "Published Online" date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com [source] |