Rat Hippocampal Pyramidal Neurons (rat + hippocampal_pyramidal_neuron)

Distribution by Scientific Domains


Selected Abstracts


Contribution of Kir3.1, Kir3.2A and Kir3.2C subunits to native G protein-gated inwardly rectifying potassium currents in cultured hippocampal neurons

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 8 2003
Joanne L. Leaney
Abstract G protein-gated inwardly rectifying potassium (GIRK) channels are found in neurons, atrial myocytes and neuroendocrine cells. A characteristic feature is their activation by stimulation of Gi/o -coupled receptors. In central neurons, for example, they are activated by adenosine and GABA and, as such, they play an important role in neurotransmitter-mediated regulation of membrane excitability. The channels are tetrameric assemblies of Kir3.x subunits (Kir3.1,3.4 plus splice variants). In this study I have attempted to identify the channel subunits which contribute to the native GIRK current recorded from primary cultured rat hippocampal pyramidal neurons. Reverse transcriptase,polymerase chain reaction revealed the expression of mRNA for Kir3.1, 3.2A, 3.2C and 3.3 subunits and confocal immunofluorescence microscopy was used to investigate their expression patterns. Diffuse staining was observed on both cell somata and dendrites for Kir3.1 and Kir3.2A yet that for Kir3.2C was weaker and punctate. Whole-cell patch clamp recordings were used to record GIRK currents from hippocampal pyramidal neurons which were identified on the basis of inward rectification, dependence of reversal potential on external potassium concentration and sensitivity to tertiapin. The GIRK currents were enhanced by the stimulation of a number of Gi/o -coupled receptors and were inhibited by pertussis toxin. In order to ascertain which Kir3.x subunits were responsible for the native GIRK current I compared the properties with those of the cloned Kir3.1 + 3.2A and Kir3.1 + 3.2C channels heterologously expressed in HEK293 cells. [source]


Astrocyte-derived factors modulate the inhibitory effect of ethanol on dendritic development

GLIA, Issue 4 2002
Penelope A. Yanni
Abstract Numerous studies in vivo and in vitro have demonstrated that ethanol disrupts neuromorphogenesis. However, it has not been determined what role, if any, is played by non-neuronal cells in mediating this effect. We recently reported that ethanol inhibits dendritic development in low-density cultures of fetal rat hippocampal pyramidal neurons (Yanni and Lindsley, 2000: Dev Brain Res 120:233,243). In this culture system, cortical astrocytes precondition neuronal culture media for 2 days before the addition of neurons, which then develop on a separate substrate in coculture with the astrocytes. To determine whether astrocyte response to ethanol mediates the effects of ethanol on neurons, the present study compared dendritic development of neurons after 6 days in medium containing 400 mg/dl ethanol in coculture with live astrocytes and in conditioned medium from astrocytes that were never exposed to ethanol. The same experiment was also performed with and without ethanol present during astrocyte preconditioning of the medium. The effects of ethanol differed depending on when it was added to the cultures relative to addition of newly dissociated neurons. However, the effects of ethanol were not related to whether neurons were cocultured with live astrocytes. When astrocytes preconditioned the medium normally, ethanol added at plating inhibited dendritic development of neurons regardless of whether they were maintained in coculture with live astrocytes or in conditioned medium. In surprising contrast, the presence of ethanol during astrocyte preconditioning of the media had a growth promoting effect on subsequent dendrite development despite the continued presence of ethanol in the medium. Thus, astrocytes release soluble factors in response to ethanol that can protect neurons from the inhibitory effects of ethanol on dendritic growth, but the timing of neuronal exposure to these factors, or their concentration, may influence their activity. GLIA 38:292,302, 2002. © 2002 Wiley-Liss, Inc. [source]


Ethanol Inhibits Muscarinic Receptor-Induced Axonal Growth in Rat Hippocampal Neurons

ALCOHOLISM, Issue 11 2009
Kathryn L. VanDeMark
Background:, In utero alcohol exposure can lead to fetal alcohol spectrum (FAS) disorders characterized by cognitive and behavioral deficits. In vivo and in vitro studies have shown that ethanol alters neuronal development. One mechanism through which ethanol has been shown to exert its effects is the perturbation of activated signaling cascades. The cholinergic agonist carbachol has been shown to induce axonal outgrowth through intracellular calcium mobilization, protein kinase C (PKC) activation, and ERK1/2 phosphorylation. This study investigated the effect of ethanol on the differentiation of rat hippocampal pyramidal neurons induced by carbachol as a possible mechanism involved in the developmental neurotoxicity of ethanol. Methods:, Prenatal rat hippocampal pyramidal neurons were treated with ethanol (50 to 75 mM) in the presence or absence of carbachol for 24 hours. Neurite outgrowth was assessed spectrophotometrically; axonal length was measured in neurons fixed and immunolabeled with the neuron-specific ,III tubulin antibody; cytotoxicity was analyzed using the thiazolyl blue tetrazolium bromide assay. The effect of ethanol on carbachol-stimulated intracellular calcium mobilization was assessed utilizing the fluorescent calcium probe, Fluo-3AM. The PepTag® assay for nonradioactive detection of PKC from Promega was used to measure PKC activity, and ERK1/2 activation was determined by densitometric analysis of Western blots probed for phospo-ERK1/2. Results:, Ethanol treatment (50 to 75 mM) caused an inhibition of carbachol-induced axonal growth, without affecting neuronal viability. Neuron treatment for 15 minutes with ethanol did not inhibit the carbachol-stimulated rise in intracellular calcium, while inhibiting PKC activity at the highest tested concentration and ERK1/2 phosphorylation at both the concentrations used in this study. On the other hand, neuron treatment for 24 hours with ethanol significantly inhibited carbachol-induced increase in intracellular calcium. Conclusions:, Ethanol inhibited carbachol-induced neurite outgrowth by inhibiting PKC and ERK1/2 activation. These effects may be, in part, responsible for some of the cognitive deficits associated with in utero alcohol exposure. [source]