Rat Heart Model (rat + heart_model)

Distribution by Scientific Domains


Selected Abstracts


Carbon Monoxide Has Direct Toxicity on the Myocardium Distinct from Effects of Hypoxia in an Ex Vivo Rat Heart Model

ACADEMIC EMERGENCY MEDICINE, Issue 1 2008
Selim Suner MD
Abstract Objectives:, Carbon monoxide (CO) toxicity causes significant central nervous system and cardiac injury. Although the neurological damage caused by CO toxicity is extensively described, the mechanisms underlying myocardial insult are unclear. The authors used an externally perfused isolated rat heart model to examine the effects of a physiological saline solution (Krebs Henseleit HEPES, KHH) aerated with CO on cardiac function. Methods:, Fifteen rats were equally divided into three groups: the control group (KHH + 100% O2), the nitrogen control group (KHH + 70% O2, 30% N2), and the CO group (KHH + 70% oxygen, 30% CO). Left ventricular peak systolic pressure (LVPsP), end diastolic pressure (LVEdP), and coronary perfusion pressure were measured while the isolated heart was paced and perfused on a modified Langendorf apparatus. Results:, Left ventricular generated pressure (LVGP = LVPsP , LVEdP) decreased in the nitrogen control and CO groups compared to the control group. There was higher LVGP in the recovery phase between the nitrogen control group compared to the CO group. Both groups had increased lactic acid levels in the experimental phase. Conclusions:, Carbon monoxide with hypoxia and hypoxemic hypoxia both result in similar depression of cardiac function. Hearts poisoned with CO with hypoxia do not recover function to the extent that hearts rendered hypoxic with nitrogen do when perfused with 100% oxygen after the insult. This suggests that CO causes direct myocardial toxicity distinct from the effects of hypoxia. [source]


Glutathione deficiency intensifies ischaemia-reperfusion induced cardiac dysfunction and oxidative stress

ACTA PHYSIOLOGICA, Issue 1 2001
S. Leichtweis
The efficacy of glutathione (GSH) in protecting ischaemia-reperfusion (I-R) induced cardiac dysfunction and myocardial oxidative stress was studied in open-chest, stunned rat heart model. Female Sprague,Dawley rats were randomly divided into three experimental groups: (1) GSH-depletion, by injection of buthionine sulphoxamine (BSO, 4 mmol kg,1, i.p.) 24 h prior to I-R, (2) BSO injection (4 mmol kg,1, i.p.) in conjunction with acivicin (AT125, 0.05 mmol kg,1, i.v.) infusion 1 h prior to I-R, and (3) control (C), receiving saline treatment. Each group was further divided into I-R, with surgical occlusion of the main left coronary artery (LCA) for 30 min followed by 20 min reperfusion, and sham. Myocardial GSH content and GSH : glutathione disulphide (GSSG) ratio were decreased by ,50% (P < 0.01) in both BSO and BSO + AT125 vs. C. Ischaemia-reperfusion suppressed GSH in both left and right ventricles of C (P < 0.01) and left ventricles of BSO and BSO + AT125 (P < 0.05). Contractility (+dP/dt and ,dP/dt) in C heart decreased 55% (P < 0.01) after I and recovered 90% after I-R, whereas ądP/dt in BSO decreased 57% (P < 0.01) with ischaemia and recovered 76 and 84% (P < 0.05), respectively, after I-R. For BSO + AT125, ądP/dt were 64 and 76% (P < 0.01) lower after ischaemia, and recovered only 67 and 61% (P < 0.01) after I-R. Left ventricular systolic pressure in C, BSO and BSO + AT125 reached 95 (P > 0.05) 87 and 82% (P < 0.05) of their respective sham values after I-R. Rate-pressure double product was 11% (P > 0.05) and 25% (P < 0.05) lower in BSO and BSO + AT125, compared with Saline, respectively. BSO and BSO + AT125 rats demonstrated significantly lower liver GSH and heart Mn superoxide dismutase activity than C rats after I-R. These data indicate that GSH depletion by inhibition of its synthesis and transport can exacerbate cardiac dysfunction inflicted by in vivo I-R. Part of the aetiology may involve impaired myocardial antioxidant defenses and whole-body GSH homeostasis. [source]


Remifentanil post-conditioning attenuates cardiac ischemia,reperfusion injury via , or , opioid receptor activation

ACTA ANAESTHESIOLOGICA SCANDINAVICA, Issue 4 2010
G. T. C. WONG
Background: Ischemic pre- or post-conditioning of the heart has been shown to involve opioid receptors. Remifentanil, an ultra-short-acting selective , opioid receptor agonist in clinical use, pre-conditions the rat heart against ischemia,reperfusion injury. This study investigates whether remifentanil post-conditioning is also cardioprotective. Methods: Remifentanil post-conditioning (5-min infusion at 1, 5, 10 or 20 ,g/kg/min) or ischemic post-conditioning (three cycles of a 10 s reperfusion interspersed with a 10 s ischemia) was induced in an open-chest rat heart model of ischemia and reperfusion injury, in the presence or absence of nor-binaltorphimine, naltrindole or CTOP, specific ,, , and , opioid receptor antagonists, respectively. The same sequence of experiments was repeated in the isolated heart model using the maximal protective dose of remifentanil from the dose,response studies. Results: Both ischemic and remifentanil post-conditioning reduced the myocardial infarct size relative to the control group in both models. This cardioprotective effect for both post-conditioning regimes was prevented by the prior administration of nor-binaltorphimine and naltrindole but not CTOP. The sole administration of the antagonists had no effect on the size of myocardial infarction. Conclusions: These results indicate that remifentanil post-conditioning protects the heart from ischemia,reperfusion injury to a similar extent as of ischemic post-conditioning. This protection involves , and , but not , opioid receptor activation. This drug has great potential as a clinical post-conditioning modality as it can be given in large doses without prolonged opioid-related side effects. [source]


Early homing of adult mesenchymal stem cells in normal and infarcted isolated beating hearts

JOURNAL OF CELLULAR AND MOLECULAR MEDICINE, Issue 2 2008
Claudia Penna
Abstract Little is known on the early homing features of transplanted mesenchymal stem cells (MSCs). We used the isolated rat heart model to study the homing of MSCs injected in the ventricular wall of a beating heart. In this model all types of cells and matrix elements with their interactions are represented, while external interferences by endothelial/neutrophil interaction and neurohormonal factors are excluded. We studied the morphology and marker expression of MSCs implanted in normal hearts and in the border-zone of infarcted myocardium. Early morphological adaptation of MSC homing differs between normal and infarcted hearts over the first 6 hrs after transplantation. In normal hearts, MSCs migrate very early through the interstitial milieu and begin to show morphological changes. Yet, in infarcted hearts MSCs remain in the site of injection forming clusters of round-shaped cells in the border-zone of the infarcted area. Both in normal and infarcted hearts, immuno-histochemistry and confocal imaging showed that, besides the proliferative marker proliferating cell nuclear agent (PCNA), some transplanted cells early express myoblastic maker GATA-4, and some of them show a VWF immunopositivity. Moreover, a few hours after injection connexin-43 is well evident between cardiomy-ocytes and injected cells. This study indicates for the first time that the isolated beating heart is a good model to study early features of MSC homing without external interferences. The results show (i) that MSCs start to change marker expression few hours after injection into a beating heart and (ii) that infarcted myocardium influences transplanted MSC morphology and mobility within the heart. [source]


Carbon Monoxide Has Direct Toxicity on the Myocardium Distinct from Effects of Hypoxia in an Ex Vivo Rat Heart Model

ACADEMIC EMERGENCY MEDICINE, Issue 1 2008
Selim Suner MD
Abstract Objectives:, Carbon monoxide (CO) toxicity causes significant central nervous system and cardiac injury. Although the neurological damage caused by CO toxicity is extensively described, the mechanisms underlying myocardial insult are unclear. The authors used an externally perfused isolated rat heart model to examine the effects of a physiological saline solution (Krebs Henseleit HEPES, KHH) aerated with CO on cardiac function. Methods:, Fifteen rats were equally divided into three groups: the control group (KHH + 100% O2), the nitrogen control group (KHH + 70% O2, 30% N2), and the CO group (KHH + 70% oxygen, 30% CO). Left ventricular peak systolic pressure (LVPsP), end diastolic pressure (LVEdP), and coronary perfusion pressure were measured while the isolated heart was paced and perfused on a modified Langendorf apparatus. Results:, Left ventricular generated pressure (LVGP = LVPsP , LVEdP) decreased in the nitrogen control and CO groups compared to the control group. There was higher LVGP in the recovery phase between the nitrogen control group compared to the CO group. Both groups had increased lactic acid levels in the experimental phase. Conclusions:, Carbon monoxide with hypoxia and hypoxemic hypoxia both result in similar depression of cardiac function. Hearts poisoned with CO with hypoxia do not recover function to the extent that hearts rendered hypoxic with nitrogen do when perfused with 100% oxygen after the insult. This suggests that CO causes direct myocardial toxicity distinct from the effects of hypoxia. [source]