Rat Forebrain (rat + forebrain)

Distribution by Scientific Domains


Selected Abstracts


Consequential Apoptosis in the Cerebellum Following Injury to the Developing Rat Forebrain

BRAIN PATHOLOGY, Issue 3 2006
Deanna L. Taylor
In focal brain lesions, alterations in blood flow and cerebral metabolism can be detected in brain areas remote from the primary injury. The cellular consequences of this phenomenon, originally termed diaschisis, are not fully understood. Here, we report that in two distinct models of forebrain injury, neuronal death in the cerebellum, a site distant to the primary injury, results as consequence of neuronal loss in the forebrain. Fourteen-day-old rats were subjected to unilateral forebrain injury, achieved by either hypoxia-ischemia (right carotid artery ligation and hypoxia) or direct needle injury to brain tissue. At defined times after injury, the presence of apoptosis was investigated by cell morphology, in situ end labeling, electron microscopy and poly-ADP-ribose polymerase (PARP) cleavage. Injury to the rat forebrain following hypoxia-ischemia increased apoptosis in the internal granular and Purkinje cell layers of the cerebellum, a site distant to that of the primary injury. The number of apoptotic cells in the cerebellum was significantly related to cell death in the hippocampus. Similarly, direct needle injury to the forebrain resulted in extensive apoptotic cell death in the cerebellum. These results emphasize the intimate relationship between defined neuronal populations in relatively distant brain areas and suggest a cellular basis for diaschisis. [source]


An FGF-responsive astrocyte precursor isolated from the neonatal forebrain

GLIA, Issue 6 2009
Grace Lin
Abstract Gliogenesis in the mammalian CNS continues after birth, with astrocytes being generated well into the first two postnatal weeks. In this study, we have isolated an A2B5+ astrocyte precursor (APC) from the postnatal rat forebrain, which is capable of differentiating into mature astrocytes in serum-free medium without further trophic support. Exposure to basic fibroblast growth factor (bFGF) selectively induces the APCs to proliferate, forming clusters of vimentin+ cells, which, within 2 weeks, differentiate into GFAP+ astrocytes. While bFGF functions as a potent mitogen, neither is it necessary to induce or maintain astrocyte differentiation, nor is it capable of maintaining the precursors in an immature, proliferative state. APCs exit the cell cycle and differentiate, even in the continued presence of fibroblast growth factor alone or in combination with other mitogenic factors such as platelet-derived growth factor. Under the culture conditions used, it was not possible to cause the astrocytes to re-enter cell cycle. After transplantation into the neonatal forebrain, APCs differentiated exclusively into astrocytes, regardless of brain region. Initially distributed widely within the forebrain, the precursors are most greatly concentrated within the subventricular zone (SVZ) and subcortical white matter, where they are maintained throughout postnatal development. APCs can be isolated from the SVZ and white matter of animals as late as 4 weeks after birth. © 2008 Wiley-Liss, Inc. [source]


BMP and LIF signaling coordinately regulate lineage restriction of radial glia in the developing forebrain

GLIA, Issue 1 2007
Hedong Li
Abstract The earliest radial glia are neural stem cells that guide neural cell migration away from ventricular zones. Subsequently, radial glia become lineage restricted during development before they differentiate into more mature cell types in the CNS. We have previously shown that subpopulations of radial glial cells express markers for glial and neuronal restricted precursors (GRPs and NRPs) in expression patterns that are temporally and spatially regulated during CNS development. To characterize further the mechanism of this regulation in rat forebrain, we tested whether secreted factors that are present during development effect lineage restriction of radial glia. We show here that in radial glial cultures LIF/CNTF up-regulates, whereas BMP2 down-regulates GRP antigens recognized by monoclonal antibodies A2B5/4D4. These activities combined with secretion of BMPs dorsally and LIF/CNTF from the choroid plexus provide an explanation for the graded distribution pattern of A2B5/4D4 in dorso-lateral ventricular regions in vivo. The regulation by LIF/CNTF of A2B5/4D4 is mediated through the JAK-STAT pathway. BMP2 promotes expression on radial glial cells of the NRP marker polysialic acid most likely by regulating N-CAM expression itself, as well as at least one polysialyl transferase responsible for synthesis of polysialic acid on N-CAM. Taken together, these results suggest that generation of lineage-restricted precursors is coordinately regulated by gradients of the secreted factors BMPs and LIF/CNTF during development of dorsal forebrain. © 2006 Wiley-Liss, Inc. [source]


Differential clustering of Caspr by oligodendrocytes and Schwann cells

JOURNAL OF NEUROSCIENCE RESEARCH, Issue 15 2009
Menahem Eisenbach
Abstract Formation of the paranodal axoglial junction (PNJ) requires the presence of three cell adhesion molecules: the 155-kDa isoform of neurofascin (NF155) on the glial membrane and a complex of Caspr and contactin found on the axolemma. Here we report that the clustering of Caspr along myelinated axons during development differs fundamentally between the central (CNS) and peripheral (PNS) nervous systems. In cultures of Schwann cells (SC) and dorsal root ganglion (DRG) neurons, membrane accumulation of Caspr was detected only after myelination. In contrast, in oligodendrocytes (OL)/DRG neurons cocultures, Caspr was clustered upon initial glial cell contact already before myelination had begun. Premyelination clustering of Caspr was detected in cultures of oligodendrocytes and retinal ganglion cells, motor neurons, and DRG neurons as well as in mixed cell cultures of rat forebrain and spinal cords. Cocultures of oligodendrocyte precursor cells isolated from contactin- or neurofascin-deficient mice with wild-type DRG neurons showed that clustering of Caspr at initial contact sites between OL processes and the axon requires glial expression of NF155 but not of contactin. These results demonstrate that the expression of membrane proteins along the axolemma is determined by the type of the contacting glial cells and is not an intrinsic characteristic of the axon. © 2009 Wiley-Liss, Inc. [source]


,-Hydroxybutyrate binds to the synaptic site recognizing succinate monocarboxylate: A new hypothesis on astrocyte,neuron interaction via the protonation of succinate

JOURNAL OF NEUROSCIENCE RESEARCH, Issue 7 2008
Tünde Molnár
Abstract Succinate (SUC), a citrate (CIT) cycle intermediate, and carbenoxolone (CBX), a gap junction inhibitor, were shown to displace [3H],-hydroxybutyrate ([3H]GHB), which is specifically bound to sites present in synaptic membrane subcellular fractions of the rat forebrain and the human nucleus accumbens. Elaboration on previous work revealed that acidic pH-induced specific binding of [3H]SUC occurs, and it has been shown to have a biphasic displacement profile distinguishing high-affinity (Ki,SUC = 9.1 ± 1.7 ,M) and low-affinity (Ki,SUC = 15 ± 7 mM) binding. Both high- and low- affinity sites were characterized by the binding of GHB (Ki,GHB = 3.9 ± 0.5 ,M and Ki,GHB = 5.0 ± 2.0 mM) and lactate (LAC; Ki,LAC = 3.9 ± 0.5 ,M and Ki,LAC = 7.7 ± 0.9 mM). Ligands, including the hemiester ethyl-hemi-SUC, and the gap junction inhibitors flufenamate, CBX, and the GHB binding site-selective NCS-382 interacted with the high-affinity site (in ,M: Ki,EHS = 17 ± 5, Ki,FFA = 24 ± 13, Ki,CBX = 28 ± 9, Ki,NCS-382 = 0.8 ± 0.1 ,M). Binding of the Na+,K+ -ATPase inhibitor ouabain, the proton-coupled monocarboxylate transporter (MCT)-specific ,-cyano-hydroxycinnamic acid (CHC), and CIT characterized the low-affinity SUC binding site (in mM: Ki,ouabain = 0.13 ± 0.05, Ki,CHC = 0.32 ± 0.07, Ki,CIT = 0.79 ± 0.20). All tested compounds inhibited [3H]SUC binding in the human nucleus accumbens and had Ki values similar to those observed in the rat forebrain. The binding process can clearly be recognized as different from synaptic and mitochondrial uptake or astrocytic release of SUC, GHB, and/or CIT by its unique GHB selectivity. The transient decrease of extracellular SUC observed during epileptiform activity suggested that the function of the synaptic target recognizing protonated succinate monocarboxylate may vary under different (patho)physiological conditions. Furthermore, we put forward a hypothesis on the synaptic activity-regulated signaling between astrocytes and neurons via SUC protonation. © 2008 Wiley-Liss, Inc. [source]


Metabolic GHB precursor succinate binds to ,-hydroxybutyrate receptors: Characterization of human basal ganglia areas nucleus accumbens and globus pallidus

JOURNAL OF NEUROSCIENCE RESEARCH, Issue 1 2006
Tünde Molnár
Abstract Binding of the metabolic ,-hydroxybutyrate (GHB) precursor succinate to NCS-382-sensitive [3H]GHB-labeled sites in crude synaptosomal or purified synaptic membrane fractions prepared from the human nucleus accumbens (NA), globus pallidus (GP) and rat forebrain has been shown. This site can be characterized by binding of ethyl hemisuccinate and gap-junction blockers, including carbenoxolone hemisuccinate and ,-GRA. There was no significant binding interaction between GABAB receptor ligands (CGP 55845, (R)-baclofen) and these [3H]GHB-labeled sites. GHB, NCS-382 and succinate binding profile of [3H]GHB-labeled sites in rat forebrain, human NA or GP synaptic membranes were similar. The synaptic fraction isolated from the rat forebrain was characterized by GHB binding inhibition constants: Ki,NCS-382 = 1.2 ± 0.2 ,M, Ki,GHB = 1.6 ± 0.3 ,M and Ki,SUCCINATE = 212 ± 66 ,M. In crude membranes containing mainly extrasynaptic membranes, distinct GHB and GABAB receptor sites were found in the NA. By contrast, extrasynaptic GABAB receptor sites of rat forebrain and GP were GHB- and succinate-sensitive, respectively. The heterogeneity of GABAB sites found in native membranes indicates GABAB receptor-dependent differences in GHB action. Based on these findings, we suggest that succinate (and possibly drugs available as succinate salt derivatives) can mimic some of the actions of GHB. © 2006 Wiley-Liss, Inc. [source]


Modulation of ERK and JNK activity by transient forebrain ischemia in rats

JOURNAL OF NEUROSCIENCE RESEARCH, Issue 3 2006
Deborah A. Shackelford
Abstract The mitogen-activated protein (MAP) kinase families of ERK and JNK participate in numerous intracellular signaling pathways and are abundantly expressed in the CNS. Activation of ERK and JNK during reperfusion of ischemic tissue is implicated in promoting cell death, insofar as inhibition of either pathway reduces neuronal cell death. However, ERK or JNK activation provides protection in other neuronal injury models. In this study, we monitored the concurrent modulation of ERK and JNK activity in the hippocampus, neocortex, and striatum during ischemia and immediately upon reperfusion in a rat model of transient global ischemia. All three regions incur a similar reduction in blood flow during occlusion but show different extents and temporal patterns of injury following reperfusion. ERK and JNK were active in the normal rat forebrain, and phosphorylation was reduced by ischemia. Upon reperfusion, ERK was rapidly activated in the hippocampus, neocortex, and striatum, whereas JNK phosphorylation increased in the hippocampus and striatum but not in the neocortex. The response of JNK vs. ERK more closely reflects the susceptibility of these regions. JNK1 was the predominant phosphorylated isoform. A minor pool of phosphorylated JNK3 increased above the control level after reperfusion in hippocampal but not in neocortical particulate fractions. In addition, a novel 32,35-kDa c-Jun kinase activity was detected in the hippocampus, neocortex, and striatum. The results show that ERK and JNK activities are rapidly, but not identically, modulated by ischemia and reperfusion and indicate that the MAP kinase pathways contribute to regulating the response to acute CNS injury. © 2006 Wiley-Liss, Inc. [source]


Detection and localization of an estrogen receptor beta splice variant protein (ER,2) in the adult female rat forebrain and midbrain regions

THE JOURNAL OF COMPARATIVE NEUROLOGY, Issue 3 2007
Wilson C.J. Chung
Abstract Estrogens regulate neural processes such as neuronal development, reproductive behavior, and hormone secretion, and signal through estrogen receptor (ER) , and ER, (here called ER,1). Recent studies have found variations in ER, and ER,1 mRNA splicing in rodents and humans. Functional reporter gene assays suggest that these splicing variations alter ER-mediated transcriptional regulation. Estrogen receptor beta 2 (ER,2), an ER,1 splice variant containing an 18 amino acid (AA) insert in the ligand binding domain, binds estradiol with ,10-fold lower affinity than ER,1, suggesting that it may serve as a low-affinity ER. Moreover, ER,2 reportedly acts in a dominant-negative fashion when heterodimerized with ER,1 or ER,. To explore the function of ER,2 in brain, an antiserum (Two,ER.1) targeting the 18 AA insert was developed and characterized. Western blot analysis and transient expression of ER,2 in cell lines demonstrated that Two,ER.1 recognizes ER,2. In the adult female rat brain, ER,2 immunoreactivity is localized in the cell nucleus and is expressed with a distribution similar to that of ER,1 mRNA. ER,2 immunoreactive cell numbers were high in, for example, piriform cortex, paraventricular nucleus, supraoptic nucleus, arcuate nucleus, and hippocampal CA regions, whereas it was low in the dentate gyrus. Moreover, ER,2 is coexpressed in gonadotropin-releasing hormone and oxytocin neurons. These studies demonstrate ER, splice variant proteins in brain and support the hypothesis that ER signaling diversity depends not only on ligand or coregulatory proteins, but also on regional and phenotypic selectivity of ER splice variant proteins. J. Comp. Neurol. 505:249,267, 2007. © 2007 Wiley-Liss, Inc. [source]


Differential expression of p120 catenin in glial cells of the adult rat brain

THE JOURNAL OF COMPARATIVE NEUROLOGY, Issue 1 2004
Norbert Chauvet
Abstract p120 catenin (p120ctn) is involved in the regulation of cadherin-mediated adhesion and the dynamic organization of the actin cytoskeleton by modulating RhoGTPase activity. We have previously described the distribution of p120ctn during rat brain development and provided substantial evidence for the potential involvement of p120ctn in morphogenetic events and plasticity in the central nervous system. Here, we analyzed the cellular and ultrastructural distribution of p120ctn in glial cells of the adult rat forebrain. The highest intensity of immunostaining for p120ctn was found in cells of the choroid plexus and ependyma and was mainly restricted to the plasma membrane. However, p120ctn was almost absent from astrocytes. In contrast, in tanycytes, a particular glial cell exhibiting remarkable morphological plasticity, p120ctn, was localized at the plasma membrane and also in the cytoplasm. We show that a large subpopulation of oligodendrocytes expressed multiple isoforms, whereas other neural cells predominantly expressed isoform 1, and that p120ctn immunoreactivity was distributed through the cytoplasm and at certain portions of the plasma membrane. Finally, p120ctn was expressed by a small population of cortical NG2-expressing cells, whereas it was expressed by a large population of these cells in the white matter. However, in both regions, proliferating NG2-positive cells consistently expressed p120ctn. The expression of p120ctn by cells of the oligodendrocyte lineage suggests that p120ctn may participate in oligodendrogenesis and myelination. Moreover, the expression of p120ctn by various cell types and its differential subcellular distribution strongly suggest that p120ctn may serve multiple functions in the central nervous system. J. Comp. Neurol. 479:15,29, 2004. © 2004 Wiley-Liss, Inc. [source]


Expression of active caspase-3 in mitotic and postmitotic cells of the rat forebrain

THE JOURNAL OF COMPARATIVE NEUROLOGY, Issue 1 2001
Xiao-Xin Yan
Abstract Active caspase-3 immunoreactivity was detected in the rat forebrain proliferative regions at birth and remained high in these areas for about 2 weeks, during which period labeled cells were present centroperipherally across the olfactory bulb. By the end of the third postnatal week, only a small number of immunolabeled cells remained in these forebrain structures. Active caspase-3 immunolabeling was localized mostly to cell nuclei and co-localized partially with TuJ1 and NeuN immunoreactivity, but not with glial fibrially acidic protein, OX-42, ,-aminobutyric acid, or terminal deoxynucleotidyl transferase-mediated nick end labeling (TUNEL)-positive labeling. Active caspase-3 and 5-bromo-2,-deoxyuridine (BrdU) double-labeled nuclei were seen in the proliferative regions after 2 hours and in the periglomerular region of the bulb after 7 days following BrdU injections. Examination of the cells with electron microscopy confirmed that the active caspase-3-containing nuclei in the proliferative regions often had infoldings and appeared to be undergoing division. Some of the cells with active caspase-3-labeled nuclei in the bulb had synapses on their somata or dendrites. Labeled dendritic spines and a few axon terminals were also observed in the olfactory bulb. Taken together, it appears that a wave of active caspase-3-positive cells are dividing in the proliferative zones and then migrating to the bulb as they differentiate into neurons. Therefore, active caspase-3 may play a role in cellular processes such as neuronal differentiation, migration, and plasticity, in addition to its role in cell death. J. Comp. Neurol. 433:4,22, 2001. © 2001 Wiley-Liss, Inc. [source]


Consequential Apoptosis in the Cerebellum Following Injury to the Developing Rat Forebrain

BRAIN PATHOLOGY, Issue 3 2006
Deanna L. Taylor
In focal brain lesions, alterations in blood flow and cerebral metabolism can be detected in brain areas remote from the primary injury. The cellular consequences of this phenomenon, originally termed diaschisis, are not fully understood. Here, we report that in two distinct models of forebrain injury, neuronal death in the cerebellum, a site distant to the primary injury, results as consequence of neuronal loss in the forebrain. Fourteen-day-old rats were subjected to unilateral forebrain injury, achieved by either hypoxia-ischemia (right carotid artery ligation and hypoxia) or direct needle injury to brain tissue. At defined times after injury, the presence of apoptosis was investigated by cell morphology, in situ end labeling, electron microscopy and poly-ADP-ribose polymerase (PARP) cleavage. Injury to the rat forebrain following hypoxia-ischemia increased apoptosis in the internal granular and Purkinje cell layers of the cerebellum, a site distant to that of the primary injury. The number of apoptotic cells in the cerebellum was significantly related to cell death in the hippocampus. Similarly, direct needle injury to the forebrain resulted in extensive apoptotic cell death in the cerebellum. These results emphasize the intimate relationship between defined neuronal populations in relatively distant brain areas and suggest a cellular basis for diaschisis. [source]


Transplanted glioma cells migrate and proliferate on host brain vasculature: A dynamic analysis

GLIA, Issue 8 2006
Azadeh Farin
Abstract Glioma cells have a remarkable capacity to infiltrate the brain and migrate long distances from the tumor, making complete surgical resection impossible. Yet, little is known about how glioma cells interact with the complex microenvironment of the brain. To investigate the patterns and dynamics of glioma cell infiltration and migration, we stereotactically injected eGFP and DsRed-2 labeled rat C6 glioma cells into neonatal rat forebrains and used time-lapse microscopy to observe glioma cell migration and proliferation in slice cultures generated from these brains. In this model, glioma cells extensively infiltrated the brain by migrating along the abluminal surface of blood vessels. Glioma cells intercalated their processes between the endothelial cells and the perivascular astrocyte end feet, but did not invade into the blood vessel lumen. Dynamic analysis revealed notable similarities between the migratory behavior of glioma cells and that previously observed for glial progenitor cells. Glioma cells had a characteristic leading process and migrated in a saltatory fashion, with bursts of migration separated by periods of immobility, and maximum speeds of over 100 ,m/h. Migrating glioma cells proliferated en route, pausing for as short as an hour to divide before the daughter cells resumed migrating. Remarkably, the majority of glioma cell divisions took place at or near vascular branch points, suggesting that mitosis is triggered by local environmental cues. This study provides the first dynamic analysis of glioma cell infiltration in living brain tissue and reveals that the migration and proliferation of transplanted glioma cells is directed by interactions with host brain vasculature. © 2006 Wiley-Liss, Inc. [source]


Heavy chain of cytoplasmic dynein is a major component of the postsynaptic density fraction

JOURNAL OF NEUROSCIENCE RESEARCH, Issue 2 2006
Huei-Hsuan Cheng
Abstract A protein with an apparent molecular size of 490 kDa was found in the postsynaptic density (PSD) fraction isolated from porcine cerebral cortices and rat forebrains, and this 490 kDa protein accounted for ,3% of the total protein of these samples. Matrix-assisted laser desorption ionization-time of flight mass spectrometric and Western blotting analyses consistently indicated that this 490 kDa protein consisted primarily of the heavy chain of cytoplasmic dynein (cDHC). Immunocytochemical analyses showed that cDHC was found in 92% and 89% of the phalloidin-positive protrusions that were themselves associated with discrete clusters of synaptophysin, a presynaptic terminal marker, and PSD-95, a postsynaptic marker, on neuronal processes, respectively. Quantitative Western blotting analyses of various subcellular fractions isolated from porcine cerebral cortices and rat forebrains further showed that not only the heavy but also the intermediate chains of dynein are enriched in the PSD fraction. Cytoplasmic dynein is a microtubule-associated motor protein complex that drives the movement of various cargos toward the minus ends of microtubules and plays many other diverse functions in the cell. Our results that cDHC is a major component of the PSD fraction, that both dynein heavy and intermediate chains are enriched in the PSD fraction and that cDHC is present in dendritic spines raise the possibilities that cytoplasmic dynein may play structural and functional roles in the postsynaptic terminal. © 2006 Wiley-Liss, Inc. [source]