Rapid Range Expansion (rapid + range_expansion)

Distribution by Scientific Domains


Selected Abstracts


Rapid range expansion of a wing-dimorphic bush-cricket after the 2003 climatic anomaly

BIOLOGICAL JOURNAL OF THE LINNEAN SOCIETY, Issue 1 2009
AXEL HOCHKIRCH
During recent decades, many species have responded to global warming by poleward range expansions. We require a better mechanistic understanding of the nature and extent of such processes to assess how climate change might affect biodiversity. Wing-dimorphic bush-crickets are excellent objects to study dispersal and colonization processes at the range margin because the long-winged morphs (macropters) represent dispersal units of otherwise flightless species. Moreover, these insects produce noisy songs and can easily be mapped. The present study comprised a detailed investigation of the population dynamics and genetics at the edge of the range of Roesel's bush-cricket, Metrioptera roeselii. We mapped the distribution of this insect in a previously unoccupied area of 185 km2 and examined the genetic structure at the range margin using four polymorphic microsatellite loci. The results obtained demonstrate that the European heat wave in 2003 induced a strong immigration of macropters in the area stemming from multiple sources, whereas only few immigrants were recorded in the two subsequent years. Macropters were genotyped in a distance of up to 19.1 km from their origin, considerably exceeding the known dispersal distances for this species. Moreover, the data show that strong local founder effects are equalized on a large scale by the high number of immigrants from multiple sources. The present study demonstrates that macropters are of high significance for the range expansion of wing-dimorphic insects because a single-year climatic anomaly can induce strong dispersal processes. © 2009 The Linnean Society of London, Biological Journal of the Linnean Society, 2009, 97, 118,127. [source]


Disturbance facilitates rapid range expansion of aspen into higher elevations of the Rocky Mountains under a warming climate

JOURNAL OF BIOGEOGRAPHY, Issue 1 2010
Simon M. Landhäusser
Abstract Aim, Trembling aspen (Populus tremuloides Michx.) is absent in the upper foothills region of west-central Alberta because of the cold conditions and short growing season at this high elevation. However, in recent years it appears that aspen has been establishing from seed in this zone and that it has been doing so mainly as a result of forest harvesting. The objectives of this study were to determine the frequency of and types of microsite required for the successful establishment of aspen seedlings at these higher elevations. Location, Rocky Mountains Upper Foothills Natural Subregion of west-central Alberta, Canada. Methods, The current distribution of mature aspen and the presence and absence of aspen seedlings in harvested areas were determined in an area c. 300 km2 in size, using ground and aerial surveys. In an intensive study, 12 belt transects (180 m long and 5 m wide) were established in areas disturbed by forest harvesting at high elevations where no aspen was present prior to harvesting. Transects were surveyed seven growing seasons after disturbance and the microsites occupied by aspen seedlings were characterized according to their substrate and microtopography. Similarly, the availability of different substrates and microtopographic positions were assessed by systematic point sampling on these sites. Results, On level surfaces, aspen seedling regeneration was found up to 200 m higher in elevation than the mature aspen in the original undisturbed forests. Overall, there were 428 seedlings ha,1 established on these transects, and the age distribution indicates that aspen seedlings had established in each of the seven growing seasons since the disturbance. Nearly all of the seedlings (93%) were established on mineral soil microsites and virtually no seedlings were established on undisturbed forest floor layers. Significantly more seedlings were found in concave microtopographic positions. Main conclusions, This study indicates that aspen establishment from seed is currently not a stochastic event and demonstrates that aspen is rapidly expanding its range upslope in the Canadian Rocky Mountain region as a result of forest management practices that expose mineral soil substrates in conjunction with a warming climate. The change in canopy composition from conifer to deciduous forests at these higher elevations will have far-reaching implications for ecosystem processes and functions. [source]


Local adaptation at the range peripheries of Sitka spruce

JOURNAL OF EVOLUTIONARY BIOLOGY, Issue 2 2010
M. MIMURA
Abstract High-dispersal rates in heterogeneous environments and historical rapid range expansion can hamper local adaptation; however, we often see clinal variation in high-dispersal tree species. To understand the mechanisms of the species' distribution, we investigated local adaptation and adaptive plasticity in a range-wide context in Sitka spruce, a wind-pollinated tree species that has recently expanded its range after glaciations. Phenotypic traits were observed using growth chamber experiments that mimicked temperature and photoperiodic regimes from the limits of the species realized niche. Bud phenology exhibited parallel reaction norms among populations; however, putatively adaptive plasticity and strong divergent selection were seen in bud burst and bud set timing respectively. Natural selection appears to have favoured genotypes that maximize growth rate during available frost-free periods in each environment. We conclude that Sitka spruce has developed local adaptation and adaptive plasticity throughout its range in response to current climatic conditions despite generally high pollen flow and recent range expansion. [source]


Taxonomic diversity gradients through geological time

DIVERSITY AND DISTRIBUTIONS, Issue 4 2001
J. Alistair Crame
Abstract., There is evidence from the fossil record to suggest that latitudinal gradients in taxonomic diversity may be time-invariant features, although almost certainly not on the same scale as that seen at the present day. It is now apparent that both latitudinal and longitudinal gradients increased dramatically in strength through the Cenozoic era (i.e. the last 65 my) to become more pronounced today than at any time in the geological past. Present-day taxonomic diversity gradients, in both the marine and terrestrial realms, are underpinned by the tropical radiations of a comparatively small number of species-rich clades. Quite why these particular taxa proliferated through the Cenozoic is uncertain, but it could be that at least part of the explanation involves the phenomenon of evolutionary escalation. This is, in essence, a theory of biological diversification through evolutionary feedback mechanisms between predators and prey; first one develops an adaptive advantage, and then the other. However, there may also have been some form of extrinsic control on the process of tropical diversification, and this was most likely centred on the phenomenon of global climate change. This is especially so over the last 15 my Various Late Cenozoic (Neogene) vicariant events effectively partitioned the tropics into a series of high diversity centres, or foci. It has been suggested that, in the largest of these in the marine realm (the Indo-West Pacific or IWP centre), a critical patterns of islands acted as a template for rapid speciation during glacioeustatic sea level cycles. The same process occurred in the Atlantic, Caribbean and East Pacific (ACEP) centre, though on a lesser scale. Tropical terrestrial diversity may also have been promoted by rapid range expansions and contractions in concert with glacial cycles (a modified refugium hypothesis). We are beginning to appreciate that an integrated sequence of Neogene tectonic and climatic events greatly influenced the formation of contemporary taxonomic diversity patterns. [source]


Isolation and characterization of nine microsatellite markers for Brachypodium sylvaticum (Huds.) Beauv., a recently invasive grass species in Oregon

MOLECULAR ECOLOGY RESOURCES, Issue 6 2008
ALISA P. RAMAKRISHNAN
Abstract The patterns of genetic diversity caused by rapid range expansions following recent colonizations are best observed using highly polymorphic genetic markers. We characterized nine microsatellite markers for Brachypodium sylvaticum, a bunchgrass invasive in the Northwestern United States and native to Eurasia. Loci exhibited from two to 10 alleles, and generally had high FIS values. These loci will help identify sources of new populations in the region, and they will be useful for studying patterns of genetic diversity during rapid range expansions. [source]