Home About us Contact | |||
Rana Temporaria Tadpoles (rana + temporaria_tadpole)
Selected AbstractsCarry-over effects of embryonic acid conditions on development and growth of Rana temporaria tadpolesFRESHWATER BIOLOGY, Issue 1 2002K. RÄsänen 1.,Conditions experienced during the early stages of development may have carry-over effects on performance during later life. The egg laying period and embryonic development of temperate and boreal zone amphibians often coincides with peak acidity resulting from spring snow-melt, but the effects of acid conditions during embryonic stage on subsequent performance are unknown. 2.,We investigated the potential carry-over effects of acidity during the embryonic stage on performance up to metamorphosis in the common frog (Rana temporaria) tadpoles. There were four combinations of acid (4.5) and neutral (7.5) pH treatments applied to the egg and larval stages in a factorial laboratory experiment. In addition, we studied the difference in embryonic and larval tolerance of acidity between two populations originating from circumneutral (pH 6.6) and acidic conditions (pH 4.8). 3.,The effects of acid conditions during the embryonic stage were sublethal, as indicated by delayed development and reduced size. Under acid conditions, tadpoles that had been raised in neutral water as embryos at first grew more slowly than tadpoles raised under acid conditions as embryos. At metamorphosis, no effects of embryonic acidity were detectable indicating that tadpoles were able to compensate fully for the initial reduction in growth. 4.,Acid conditions during the larval period had a strongly negative effect on survival, size and age at metamorphosis. The amount of food consumed was lower under acid conditions, suggesting that reduced food consumption was at least partly responsible for the negative effects. 5.,Although the two populations differed in the length of larval period, there was no indication of a differential response to the treatments in any of the metamorphic traits studied. 6.,These results suggest that, although moderate acid conditions during embryonic development affect growth and development negatively, this influence does not persist after conditions have returned to normal. However, even moderately acid conditions during the larval period may have a strong negative influence on survival and performance of the tadpoles. [source] The effects of perceived predation risk on pre- and post-metamorphic phenotypes in the common frogJOURNAL OF ZOOLOGY, Issue 3 2009C. E. Stamper Abstract Where organisms undergo radical changes in habitat during ontogeny, dramatic phenotypic reshaping may be required. However, physiological and functional interrelationships may constrain the extent to which an individual's phenotype can be equally well adapted to their habitat throughout the life cycle. The phenotypic response of tadpoles to the presence of a predator has been reported for several species of anuran but the potential post-metamorphic consequences have rarely been considered. We reared common frog Rana temporaria tadpoles in the presence or absence of a larval odonate predator, Aeshna juncea, and examined the consequences of the resulting phenotypic adjustment in the aquatic larval stage of the life cycle for the terrestrial juvenile phenotype. In early development tadpoles developed deeper tail fins and muscles in response to the predator and, in experimental trials, swam further than those reared in the absence of a predator. While the difference in swimming ability remained significant throughout the larval period, by the onset of metamorphosis we could no longer detect any differences in the morphological parameters measured. The corresponding post-metamorphic phenotypes also did not initially differ in terms of morphology. At 12 weeks post-metamorphosis, however, froglets that developed from predator-exposed tadpoles swam more slowly and less far than those that developed from tadpoles reared in the absence of predators, the opposite trend to that observed in the larval stage of the life cycle, and had narrower femurs. These results suggest that there may be long-term costs for subsequent life-history stages of tailoring the larval phenotype to prevailing environmental conditions. [source] Phenotypic plasticity of anuran larvae: environmental variables influence body shape and oral morphology in Rana temporaria tadpolesJOURNAL OF ZOOLOGY, Issue 2 2002Miguel Vences Abstract Environmental variables shaped the morphology of tadpoles of the common frog, Rana temporaria, in various ways at the Pyrenean locality Circo de Piedrafita. Examining only specimens in similar developmental stages, those from small ponds (with higher temperature and higher tadpole density) had lower growth rates, lower relative tail height, lower relative body width and fewer labial keratodonts and keratodont rows. The variation in keratodonts may have been caused by heterochrony related to the slower growth rate. The number of lingual papillae also differed between ponds but was not related to pond size. Higher predator densities caused a higher percentage of damaged tails and a lower relative tail length in specimens with apparently intact tails, probably as a result of incomplete regeneration after mutilations earlier in development. [source] Physiological variation along a geographical gradient: is growth rate correlated with routine metabolic rate in Rana temporaria tadpoles?BIOLOGICAL JOURNAL OF THE LINNEAN SOCIETY, Issue 1 2009BEATRICE LINDGREN Shorter season length and lower temperature towards higher latitudes and altitudes often select for intraspecific clines in development and growth rates. However, the physiological mechanisms enabling these clines are not well understood. We studied the relationship between routine metabolic rate (RMR) and larval life-history traits along a 1500-km latitudinal gradient across Sweden. In a laboratory common garden experiment, we exposed eight common frog Rana temporaria populations to two experimental temperatures (15 and 18 °C) and measured RMR using flow-through respirometry. We found significant differences among populations in RMR, but there was no evidence for a linear relationship between latitude and RMR in either temperature treatment. However, we found a concave relationship between latitude and RMR at the lower experimental temperature. RMR was not correlated with growth rate at population or at individual levels. The results obtained suggest that, unlike in growth and development rates, there is no latitudinal cline in RMR in R. temporaria tadpoles. © 2009 The Linnean Society of London, Biological Journal of the Linnean Society, 2009, 98, 217,224. [source] |