Home About us Contact | |||
Rare Phenotype (rare + phenotype)
Selected AbstractsDistinct C-terminus of the B subunit of factor XIII in a population-associated major phenotype: the first case of complete allele-specific alternative splicing products in the coagulation and fibrinolytic systemsJOURNAL OF THROMBOSIS AND HAEMOSTASIS, Issue 7 2009H. IWATA Summary.,Objectives: The purpose of this study was to elucidate the molecular bases of the heterogeneity of the B subunit of coagulation factor XIII (FXIII-B), classified by isoelectric focusing into its three population-associated major phenotypes. Methods and Results: By genetic sequencing and polymerase chain reaction (PCR),restriction fragment length polymorphism analyses, a C-to-G change was identified in intron K for the Asian-associated major phenotype FXIII-B*3. A transcript containing the novel exon XII, was detected by reverse transcription PCR using hepatocyte cell lines with this allele. The exclusive existence of a novel C-terminal peptide in a homozygote of FXIII-B*3 was also detected by matrix-assisted laser-desorption ionization time of flight mass spectrometry. The FXIII-B*3 isoform had a C-terminus 15 residues longer than the other isoforms, containing two additional basic amino acids and one extra acidic amino acid. Accordingly, the C-to-G nucleotide substitution created an efficient splice acceptor AG dinucleotide, which resulted in allele-specific alternative splicing in intron K. When compared with FXIII-B*1, the third major phenotype, FXIII-B*2, had an A-to-G change in exon III, converting His95 to Arg, and a rare phenotype, FXIII-B*4, had an A-to-T change in exon VII, converting Glu368 to Val. Conclusions: We found an extremely rare event of complete allele-specific alternative splicing for FXIII-B. The FXIII-B*3 isoform had a distinct C-terminal peptide, while the FXIII-B*2 and FXIII-B*4 isoforms had His95 to Arg and Glu368 to Val substitutions, respectively, which led to differential isoelectric points of these isoforms. Such variations in the amino acid sequence of FXIII-B may have profound effects on its structure,function relationship, plasma FXIII levels, and disease susceptibility. [source] Survival of inoculated Saccharomyces cerevisiae strain on wine grapes during two vintagesLETTERS IN APPLIED MICROBIOLOGY, Issue 3 2006F. Comitini Abstract Aims:, To investigate the influence of a specific ecological niche, the wine grape, on the survival and development of Saccharomyces cerevisiae. Methods and Results:, A strain with a rare phenotype was sprayed onto the grape surfaces and monitored through two vintages using a specific indicative medium and analysing the internal transcribed spacer regions in the 5·8S rDNA. During the ripening process, there was a progressive colonization of the surface of the undamaged and damaged grapes by epiphytic yeasts, up to the time of harvest. The damaged wine grapes showed a much greater epiphytic yeast population. However, the inoculated S. cerevisiae strain showed a scarce persistence on both undamaged and damaged wine grapes, and the damaged grapes did not appear to improve the grape surface colonization of this strain. Conclusions:, Results indicated that wine grape is not a favourable ecological niche for the development and colonization of S. cerevisiae species. Significance and Impact of the Study:, Results of this work are further evidence that S. cerevisiae is not specifically associated with natural environments such as damaged and undamaged wine grapes. [source] Anarchy in the UK: Detailed genetic analysis of worker reproduction in a naturally occurring British anarchistic honeybee, Apis mellifera, colony using DNA microsatellitesMOLECULAR ECOLOGY, Issue 9 2002N. Châline Abstract Anarchistic behaviour is a very rare phenotype of honeybee colonies. In an anarchistic colony, many workers' sons are reared in the presence of the queen. Anarchy has previously been described in only two Australian colonies. Here we report on a first detailed genetic analysis of a British anarchistic colony. Male pupae were present in great abundance above the queen excluder, which was clearly indicative of extensive worker reproduction and is the hallmark of anarchy. Seventeen microsatellite loci were used to analyse these male pupae, allowing us to address whether all the males were indeed workers' sons, and how many worker patrilines and individual workers produced them. In the sample, 95 of 96 of the males were definitely workers' sons. Given that , 1% of workers' sons were genetically indistinguishable from queen's sons, this suggests that workers do not move any queen-laid eggs between the part of the colony where the queen is present to the area above the queen excluder which the queen cannot enter. The colony had 16 patrilines, with an effective number of patrilines of 9.85. The 75 males that could be assigned with certainty to a patriline came from 7 patrilines, with an effective number of 4.21. They were the offspring of at least 19 workers. This is in contrast to the two previously studied Australian naturally occurring anarchist colonies, in which most of the workers' sons were offspring of one patriline. The high number of patrilines producing males leads to a low mean relatedness between laying workers and males of the colony. We discuss the importance of studying such colonies in the understanding of worker policing and its evolution. [source] Non-cystic solid-pseudopapillary tumor of the pancreas showing nuclear accumulation and activating gene mutation of ,-cateninPATHOLOGY INTERNATIONAL, Issue 11 2006Isao Nishimori Solid-pseudopapillary tumor (SPT) is an unusual pancreatic neoplasm that is characterized by a mixture of solid and cystic components and a fibrous capsule. Recently, the tumorigenesis of SPT has been reported to be associated with gene mutations of ,-catenin, which is a molecule participating in the Wnt signaling pathway. Reported herein is the case of a 53-year-old woman with SPT. The tumor, approximately 3 cm in diameter in the pancreas body, had a clear margin and central calcification but had neither a cystic component nor fibrous capsule. Several lines of pathological findings in the surgically resected specimen indicated SPT: (i) pseudopapillary proliferation of eosinophilic polygonal cells with oval nuclei; (ii) positive expression of several marker molecules indicating differentiation into acinar and endocrine cells; and (iii) zymogen granule-like structures in the cytoplasm on electron microscopy. Further, the tumor cells had intense nuclear accumulation of ,-catenin and an activating mutation, 34Gly(GGA) to Arg(AGA), in exon 3 of the ,-catenin gene, as previously reported in most SPT. These findings suggest that association of the ,-catenin phenotype with development of the rare phenotype of SPT, a non-cystic and unencapsulated tumor, is unlikely. [source] Orange, yellow and white-cream: inheritance of carotenoid-based colour in sunflower pollenPLANT BIOLOGY, Issue 1 2010M. Fambrini Abstract Inheritance of pollen colour was studied in sunflower (Helianthus annuus L.) using three distinct pollen colour morphs: orange, yellow and white-cream. Orange is the most common colour of sunflower pollen, while the yellow morph is less frequent. These two types were observed in the inbred lines F11 and EF2L, respectively. White-cream pollen is a rare phenotype in nature, and was identified in a mutant, named white-cream pollen, recovered in the R2 generation of an in vitro regenerated plant. The F11 inbred line was used as starting material for in vitro regeneration. The carotenoid content of these three pollen morphs differed, and was extremely reduced in white-cream pollen. The phenotype of F1 populations obtained by reciprocal crosses revealed that the orange trait was dominant over both white-cream and yellow. Segregation of F2 populations of both crosses, orange × yellow and orange × white-cream, approached a 3:1 ratio, indicating the possibility of simple genetic control. By contrast, a complementation cross between the two lines with white-cream and yellow pollen produced F1 plants with orange pollen. The F2 populations of this cross-segregated as nine orange: four white-cream: four yellow. A model conforming to the involvement of two unlinked genes, here designated Y and O, can explain these results. Accessions with yellow pollen would have the genotype YYoo, the white-cream pollen mutant would have yyOO and the accession with orange pollen would have YYOO. Within F2 populations of the cross white-cream × yellow a new genotype, yyoo, with white-cream pollen was scored. The results of the cross yyoo × YYoo produced only F1 plants with yellow pollen, supporting a recessive epistatic model of inheritance between two loci. In this model, yy is epistatic on O and o. In F2 populations, the distributions of phenotypic classes suggested that the genetic control of carotenoid content is governed by major genes, with large effects segregating in a background of polygenic variation. These three pollen morphs can provide insight into the sequence in which genes act, as well into the biochemical pathway controlling carotenoid biosynthesis in anthers and the transfer of these different pigments into pollenkitt. [source] Brief communication: Blue eyes in lemurs and humans: Same phenotype, different genetic mechanismAMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY, Issue 2 2009Brenda J. Bradley Abstract Almost all mammals have brown or darkly-pigmented eyes (irises), but among primates, there are some prominent blue-eyed exceptions. The blue eyes of some humans and lemurs are a striking example of convergent evolution of a rare phenotype on distant branches of the primate tree. Recent work on humans indicates that blue eye color is associated with, and likely caused by, a single nucleotide polymorphism (rs12913832) in an intron of the gene HERC2, which likely regulates expression of the neighboring pigmentation gene OCA2. This raises the immediate question of whether blue eyes in lemurs might have a similar genetic basis. We addressed this by sequencing the homologous genetic region in the blue-eyed black lemur (Eulemur macaco flavifrons; N = 4) and the closely-related black lemur (Eulemur macaco macaco; N = 4), which has brown eyes. We then compared a 166-bp segment corresponding to and flanking the human eye-color-associated region in these lemurs, as well as other primates (human, chimpanzee, orangutan, macaque, ring-tailed lemur, mouse lemur). Aligned sequences indicated that this region is strongly conserved in both Eulemur macaco subspecies as well as the other primates (except blue-eyed humans). Therefore, it is unlikely that this regulatory segment plays a major role in eye color differences among lemurs as it does in humans. Although convergent phenotypes can sometimes come about via the same or similar genetic changes occurring independently, this does not seem to be the case here, as we have shown that the genetic basis of blue eyes in lemurs differs from that of humans. Am J Phys Anthropol, 2009. © 2009 Wiley-Liss, Inc. [source] How do natural and sexual selection contribute to sympatric speciation?JOURNAL OF EVOLUTIONARY BIOLOGY, Issue 6 2004S. Gourbiere Abstract I use explicit genetic models to investigate the importance of natural and sexual selection during sympatric speciation and to sort out how genetic architecture influences these processes. Assortative mating alone can lead to speciation, but rare phenotypes' disadvantage in finding mates and intermediate phenotypes' advantage due to stabilizing selection strongly impede speciation. Any increase in the number of loci also decreases the likelihood of speciation. Sympatric speciation is then harder to achieve than previously demonstrated by many theoretical studies which assume no mating disadvantage for rare phenotypes and consider a small number of loci. However, when a high level of assortative mating evolves, sexual selection might allow populations to split into dimorphic distributions with peaks corresponding to nearly extreme phenotypes. Competition then works against speciation by favouring intermediate phenotypes and preventing further divergence. The interplay between natural and sexual selection during speciation is then more complex than previously explained. [source] |