Raman Enhancement (raman + enhancement)

Distribution by Scientific Domains


Selected Abstracts


Size-dependent SERS enhancement of colloidal silver nanoplates: the case of 2-amino-5-nitropyridine

JOURNAL OF RAMAN SPECTROSCOPY, Issue 2 2009
A. C. Sant'Ana
Abstract Surface-enhanced Raman scattering (SERS) spectra of 2-amino-5-nitropyridine (ANP) adsorbed on colloidal silver triangular nanoplates were obtained using samples with different mean sizes and surface plasmon frequencies. The relative SERS enhancement factor for each sample was determined by the analysis of the normalized SERS excitation profiles of ANP vibrational modes for nanoplates in suspension, without aggregation. The SERS profiles are blue-shifted in relation to the localized surface plasmon peak. The detailed characterization of both morphology and concentration of the samples in addition to a rigorous normalization of the SERS spectra allowed a quantitative correlation between the SERS profiles and the mean size of the nanoplates. This correlation indicated the existence of an optimum size of the nanoplates for maximum Raman enhancement. Copyright © 2008 John Wiley & Sons, Ltd. [source]


Surface-enhanced Raman scattering spectroscopy via gold nanostars

JOURNAL OF RAMAN SPECTROSCOPY, Issue 1 2009
E. Nalbant Esenturk
Abstract Anisotropic metallic nanoparticles (NPs) have unique optical properties, which lend them to applications such as surface-enhanced Raman scattering (SERS) spectroscopy. Star-shaped gold (Au) NPs were prepared in aqueous solutions by the seed-mediated growth method and tested for Raman enhancement using 2-mercaptopyridine (2-MPy) and crystal violet (CV) probing molecules. For both molecules, the SERS activity of the nanostars was notably stronger than that of the spherical Au NPs of similar size. The Raman enhancement factors (EFs) for 2-MPy on Au nanostars and nanorods are comparable and estimated as greater than 5 orders of magnitude. However, the enhancement for CV on nanostars was significantly higher than for nanorods, in particular at CV concentrations of 100 nM or lower. This article is a US Government work and is in the public domain in the USA. Published in 2008 by John Wiley & Sons, Ltd. [source]


Surface-enhanced Raman scattering study of the red dye laccaic acid

JOURNAL OF RAMAN SPECTROSCOPY, Issue 10 2007
M. V. Cañamares
Abstract FT-Raman and surface-enhanced Raman scattering (SERS) spectroscopy were applied to the study of lac dye, a highly fluorescent anthraquinone red dye. The SERS spectra were obtained at different pH values, on Ag nanoparticles prepared by chemical reduction with citrate and hydroxylamine, and at several excitation wavelengths, in order to find the best experimental conditions for the detection of the lac dye. The lower detection limit was achieved using nanoparticles prepared by reduction with hydroxylamine, excitation at 514.5 nm, and slightly acidic pH conditions, thus exploiting a combination of factors including lower electrostatic repulsion between dye and nanoparticles and resonance Raman enhancement. A comparison between the adsorption of laccaic acid (LA) and carminic acid (CA), another anthraquinone red dye, was also done, based on the SERS spectra of both dyes. Copyright © 2007 John Wiley & Sons, Ltd. [source]


Surface enhanced Raman scattering of a lipid Langmuir monolayer at the air,water interface

BIOPOLYMERS, Issue 1-2 2004
C. Mangeney
Abstract Surface enhanced Raman spectra were recorded from a phospholipid monolayer directly at the air,water interface. We used an organized monolayer of negatively charged tetramyristoyl cardiolipins as a template for the electrochemical generation of silver deposits. This two-dimensional electrodeposition of silver under potentiostatic control was the substrate for enhancement of Raman spectra. We report the optimized conditions for the Raman enhancement, the microscopic observations of the deposits, and their characterization by atomic force microscopy. Laser excitation at 514.5 nm leads to intense and reproducible surface enhanced Raman scattering spectra recorded in situ from one monolayer of cardiolipin, using 0.5 mol % of 10N nonyl acridine orange or 5 mol % of acridine in the film, and demonstrates the possibility of estimating the pH at the metal/phospholipidic film interface. © 2004 Wiley Periodicals, Inc. Biopolymers, 2004 [source]