RXR Agonists (rxr + agonist)

Distribution by Scientific Domains


Selected Abstracts


Differential modulation of rat hepatic stellate phenotype by natural and synthetic retinoids

HEPATOLOGY, Issue 1 2004
Karine Hellemans
Activation of hepatic stellate cells (HSC) is a central event in the pathogenesis of liver fibrosis during chronic liver injury. We examined the expression of retinoic acid (RAR) and retinoid X receptors (RXR) during HSC activation and evaluated the influence of natural and synthetic retinoic acids (RA) on the phenotype of culture-activated HSC. The expression of the major RAR/RXR subtypes and isoforms was analyzed by Northern hybridization. Presence of functional receptor proteins was established by gel shift analysis. Retinoic acids, RAR, and RXR selective agonists and an RAR antagonist were used to evaluate the effects of retinoid signalling on matrix synthesis by Northern blotting and immunoprecipitation, and on cell proliferation by BrdU incorporation. The 9- cisRA and synthetic RXR agonists reduced HSC proliferation and synthesis of collagen I and fibronectin. All- trans RA and RAR agonists both reduced the synthesis of collagen I, collagen III, and fibronectin, but showed a different effect on cell proliferation. Synthetic RAR agonists did not affect HSC proliferation, indicating that ATRA inhibits cell growth independent of its interaction with RARs. In contrast, RAR specific antagonists enhance HSC proliferation and demonstrate that RARs control proliferation in a negative way. In conclusion, natural RAs and synthetic RAR or RXR specific ligands exert differential effects on activated HSC. Our observations may explain prior divergent results obtained following retinoid administration to cultured stellate cells or to animals subjected to fibrogenic stimuli. (HEPATOLOGY 2004;39:97,108.) [source]


Effects of retinoids and thiazolidinediones on proliferation, insulin release, insulin mRNA, GLUT 2 transporter protein and mRNA of INS-1 cells

CELL BIOCHEMISTRY AND FUNCTION, Issue 3 2001
J. Blumentrath
Abstract Both 9-cis-retinoic acid (9cRA) and all-trans-retinoic acid (ATRA) are active metabolites of vitamin A (retinol). There exists an interaction between retinoid receptors and peroxisome proliferator-activated receptors (PPAR,). To define their functions in an insulin secreting system the effects of ATRA, 9cRA and the PPAR, agonist rosiglitazone on cell proliferation, insulin release and glucose transporter (GLUT) 2 of INS-1 cells were tested. Retinoic acid receptor (RAR-, and -,) and retinoid X receptor (RXR-, and -,) proteins are present (immunoblots). Both 9cRA and ATRA inhibit INS-1 cell proliferation ([3H]-thymidine assay) in a concentration dependent manner. Both 9cRA and ATRA increased insulin release, but only ATRA ralsed the GLUT 2 mRNA in a bell-shaped concentration response curve after 48,h. The insulinotropic effect of one compound is not significantly superimposed by the other indicating that the same binding sites are used by 9cRA and ATRA. The acute and chronic effects of the PPAR, agonist rosiglitazone on insulin release were additionally determined since glitazones act as transcription factors together with RXR agonists. At high concentrations (100,,m) rosiglitazone inhibited glucose (8.3,mm) stimulated insulin secretion (acute experiment over 60,min). Insulin secretion, however, was increased during a 24,h treatment at a concentration of 10,,m and again inhibited at 100,,m. Changes in preproinsulin mRNA expression were not observed. Rosiglitazone (100,,m) increased GLUT 2 mRNA paralleled by an increase of GLUT 2 protein, but only after 24,h of treatment. This data indicate that RAR and RXR mediate insulin release. The changes in GLUT 2 have no direct impact on insulin release; the inhibition seen at high concentrations of either compound is possibly the result of the observed inhibition of cell proliferation. Effects of rosiglitazone on preproinsulin mRNA and GLUT 2 (mRNA and protein) do not play a role in modulating insulin secretion. With the presence of an RXR receptor agonist the effect of rosiglitazone on insulin release becomes stimulatory. Thus the effects of RAR-, RXR agonists and rosiglitazone depend on their concentrations, the duration of their presence and are due to specific interactions. Copyright © 2001 John Wiley & Sons, Ltd. [source]


Pyrazine Arotinoids with Inverse Agonist Activities on the Retinoid and Rexinoid Receptors

CHEMBIOCHEM, Issue 7 2009
José García
Abstract RAR and RXR agonists: A collection of pyrazine-based RAR/RXR ligands were prepared by a series of palladium catalyzed cross-coupling reactions and characterized. Structure,activity relationships were elucidated. Retinoic acid receptor (RAR) ,/,-subtype-selective and retinoid X receptor (RXR) inverse agonist activities are described for pyrazine acrylic acid arotinoid, 14,d. Heterocyclic arotinoids derived from central-region dihalogenated pyrazine scaffolds have been synthesized by consecutive halogen and/or position-selective palladium-catalyzed cross-coupling reactions. Pyrazines were further functionalized as alkyl ethers or methylamines prior to the last Pd-catalyzed reactions. Transient transactivation studies with the retinoic acid receptor (RAR) ,, ,, and , subtypes and with retinoid X receptor (RXR) , revealed distinct agonist, antagonist, and inverse agonist activities for these compounds. Of interest are the RAR,,,-selective inverse agonists with pyrazine acrylic acid structures, in particular 14,c, which is RAR,-selective, and 14,d, a pan-RAR/RXR inverse agonist with more affinity for the RAR subtypes that enhance the interaction of RAR with cognate corepressors. [source]


The First Potent Subtype-Selective Retinoid X Receptor (RXR) Agonist Possessing a 3-Isopropoxy-4-isopropylphenylamino Moiety, NEt-3IP (RXR,/,-dual agonist)

CHEMMEDCHEM, Issue 5 2008
Kayo Takamatsu
Abstract Retinoid X receptor (RXR) agonists (rexinoids) are attracting much attention for their use in treatment of cancers, including tamoxifen-resistant breast cancer and taxol-resistant lung cancer, and metabolic disease. However, known RXR agonists have a highly lipophilic character. In addition, no subtype-selective RXR agonists have been found. We previously reported an RXR,-preferential agonist 4-[N -methanesulfonyl- N -(5,5,8,8-tetramethyl-5,6,7,8-tetrahydro-2-naphthyl)amino]benzoic acid (6,a). The RXR agonistic activity is much less than that of well-known RXR agonists. To develop potent, less-lipophilic, and subtype-selective RXR agonists, we created new RXR agonists possessing alkoxy and isopropyl groups as a lipophilic domain of the common structure of well-known RXR agonists. As a result, compounds possessing branched alkoxy groups, 6-[N -ethyl- N -(3-isopropoxy-4-isopropylphenyl)amino]nicotinic acid (NEt-3IP: 7,a) and 6-[N -ethyl- N -(3-isobutoxy-4-isopropylphenyl)amino]nicotinic acid (NEt-3IB: 7,c), showed RXR agonistic activity as potent as, or more potent than, the activities of representative RXR agonists. Moreover, NEt-3IP (7,a) was found to be the first RXR,/,-selective (or RXR,/,-dual) agonist. Being potent, less lipophilic, and having RXR subtype-selective activity, NEt-3IP (7,a) is expected to become a new drug candidate and to be a useful biological tool for clarifying each RXR subtype function. [source]