rRNA Gene Sequence Analysis (rrna + gene_sequence_analysis)

Distribution by Scientific Domains
Distribution within Life Sciences


Selected Abstracts


Genomic and phenotypic heterogeneity of Acidithiobacillus spp. strains isolated from diverse habitats in China

FEMS MICROBIOLOGY ECOLOGY, Issue 2 2008
Yong-Qing Ni
Abstract The genetic variability among 32 Chinese Acidithiobacillus spp. environmental isolates and four reference strains representing three recognized species of the genus Acidithiobacillus was characterized by using a combination of molecular methods, namely restriction fragment length polymorphisms of PCR-amplified 16S rRNA genes and 16S,23S rRNA gene intergenic spacers, repetitive element PCR, arbitrarily primed PCR and 16S rRNA gene sequence analyses. 16S rRNA gene sequences revealed that all Acidithiobacillus spp. strains could be assigned to seven groups, three of which encompassed the Acidithiobacillus ferrooxidans strains from various parts of the world. A comparative analysis of the phylogenetic Group 1 and 2 was undertaken. Restriction fragment length polymorphism results allowed us to separate the 35 Acidithiobacillus strains into 15 different genotypes. An integrated phenotypic and genotypic analysis indicated that the distribution of A. ferrooxidans strains among the physiological groups were in agreement with their distribution among the genomic groups, and that no clear correlation was found between the genetic polymorphism of the Acidithiobacillus spp. strains and either the geographic location or type of habitats from which the strains were isolated. In addition, five unidentified sulfur-oxidizing isolates may represent one or two novel species of the genus Acidithiobacillus. The results showed that the Chinese Acidithiobacillus spp. isolates exhibited a high degree of genomic and phenotypic heterogeneity. [source]


MORPHOLOGY, REPRODUCTION, AND THE 18S rRNA GENE SEQUENCE OF PIHIELLA LIAGORACIPHILA GEN.

JOURNAL OF PHYCOLOGY, Issue 5 2003
ET SP.
Pihiella liagoraciphila gen. et sp. nov. (Rhodophyta) is described for a minute endo/epiphyte that is commonly associated with members of the Liagoraceae ( Nemaliales, Rhodophyta). Algae are discoid or subspherical and grow to a maximum diameter of 400 ,m. Attachment is via isolated elongate rhizoids that penetrate into the loosely filamentous structure of the host or by a pad of several coalesced rhizoids where the host has a more cohesive cortex. Elongate surface hairs are common. Gametophytes are dioecious, the spermatangia arising on surface cells, and carpogonia with elongate trichogynes borne directly on undifferentiated surface supporting cells. Large sporangia form on stalk cells across the upper surface of the plants, these appearing to be either monosporangial or the result of fertilization of the carpogonia and equivalent to undivided zygotosporangia. Carposporophytes and tetrasporangia are unknown. 18S rRNA gene sequence analyses indicate that Pihiella constitutes a clade of long branch length most closely related to the Ahnfeltiales. The unique morphology and reproduction of Pihiella, combined with a substantial genetic divergence from the Ahnfeltiales, suggest that it is sufficiently distinct to warrant placement in a new family and order. We therefore describe the family Pihiellaceae and the order Pihiellales to accommodate the new genus. [source]


Phylogenetic analysis of Porphyromonas species isolated from the oral cavity of Australian marsupials

ENVIRONMENTAL MICROBIOLOGY, Issue 9 2008
Deirdre Mikkelsen
Summary Porphyromonas species are frequently isolated from the oral cavity and are associated with periodontal disease in both animals and humans. Black, pigmented Porphyromonas spp. isolated from the gingival margins of selected wild and captive Australian marsupials with varying degrees of periodontal disease (brushtail possums, koalas and macropods) were compared phylogenetically to Porphyromonas strains from non-marsupials (bear, wolf, coyote, cats and dogs) and Porphyromonas gingivalis strains from humans using 16S rRNA gene sequence analysis. The results of the phylogenetic analysis identified three distinct groups of strains. A monophyletic P. gingivalis group (Group 1) contained only strains isolated from humans and a Porphyromonas gulae group (Group 2) was divided into three distinct subclades, each containing both marsupial and non-marsupial strains. Group 3, which contained only marsupial strains, including all six strains isolated from captive koalas, was genetically distinct from P. gulae and may constitute a new Porphyromonas species. [source]


Molecular and morphological characterization of the association between bacterial endosymbionts and the marine nematode Astomonema sp. from the Bahamas

ENVIRONMENTAL MICROBIOLOGY, Issue 5 2007
Niculina Musat
Summary Marine nematode worms without a mouth or functional gut are found worldwide in intertidal sandflats, deep-sea muds and methane-rich pock marks, and morphological studies show that they are associated with endosymbiotic bacteria. While it has been hypothesized that the symbionts are chemoautotrophic sulfur oxidizers, to date nothing is known about the phylogeny or function of endosymbionts from marine nematodes. In this study, we characterized the association between bacterial endosymbionts and the marine nematode Astomonema sp. from coral reef sediments in the Bahamas. Phylogenetic analysis of the host based on its 18S rRNA gene showed that Astomonema sp. is most closely related to non-symbiotic nematodes of the families Linhomoeidae and Axonolaimidae and is not closely related to marine stilbonematinid nematodes with ectosymbiotic sulfur-oxidizing bacteria. In contrast, phylogenetic analyses of the symbionts of Astomonema sp. using comparative 16S rRNA gene sequence analysis revealed that these are closely related to the stilbonematinid ectosymbionts (95,96% sequence similarity) as well as to the sulfur-oxidizing endosymbionts from gutless marine oligochaetes. The closest free-living relatives of these gammaproteobacterial symbionts are sulfur-oxidizing bacteria from the family Chromatiaceae. Transmission electron microscopy and fluorescence in situ hybridization showed that the bacterial symbionts completely fill the gut lumen of Astomonema sp., suggesting that these are their main source of nutrition. The close phylogenetic relationship of the Astomonema sp. symbionts to known sulfur-oxidizing bacteria as well as the presence of the aprA gene, typically found in sulfur-oxidizing bacteria, indicates that the Astomonema sp. symbionts use reduced sulfur compounds as an energy source to provide their hosts with nutrition. [source]


Arsenic Binding to Iron(II) Minerals Produced by An Iron(III)-Reducing Aeromonas Strain Isolated from Paddy Soil

ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 11 2009
Xin-Jun Wang
Abstract An iron-reducing bacterial strain was isolated from a paddy soil and identified as a member of the Aeromonas group by 16S rRNA gene sequence analysis. When the cells were growing with dissolved Fe(III) as the electron acceptor in the presence of As(V), Fe(II) minerals (siderite and vivianite) were formed and dissolved. As was removed efficiently from solution. When the cells were growing with the Fe(III) hydroxide mineral (ferrihydrite) as the electron acceptor in the presence of As(V), ferrihydrite was reduced and dissolved As(V) concentrations decreased sharply. The present study results demonstrated first that members of the Aeromonas group can reduce Fe(III) in paddy soils and second that iron reduction does not necessarily lead to arsenic mobilization. However, As immobilization can occur in environments that contain significant concentrations of counterions such as bicarbonate and phosphate. [source]


Isolation and identification of equol-producing bacterial strains from cultures of pig faeces

FEMS MICROBIOLOGY LETTERS, Issue 1 2008
Zhuo-Teng Yu
Abstract Transformation of daidzein to equol was compared during fermentation of three growth media inoculated with faeces from Erhualian piglets, but equol was produced from only one medium, M1. Two equol-producing strains (D1 and D2) were subsequently isolated using medium M1. Both strains were identified as Eubacterium sp., on the basis of morphological and physiological characteristics, and 16S rRNA gene sequence analysis showed that strains D1 and D2 were most closely related to previously characterized daidzein-metabolizing bacteria isolated from human faecal and rumen samples, respectively. This suggests that the ability to metabolize daidzein can be found among bacteria present within the mammalian intestine. The results provided the first account of conversion of daidzein directly to equol by bacterial species from farm animals. These strains may be of importance to the improvement of animal performance, and the use of medium M1 could provide a simple way to isolate bacterial strains capable of transforming daidzein into equol. [source]


Application of recA and rpoB sequence analysis on phylogeny and molecular identification of Geobacillus species

JOURNAL OF APPLIED MICROBIOLOGY, Issue 2 2009
F.Y. Weng
Abstract Aims:, Some Geobacillus species have highly similar 16S rRNA gene sequences, making 16S rDNA sequence analysis-based identification problematic. To overcome this limitation, recA and rpoB sequence analysis was evaluated as an alternative for distinguishing Geobacillus species. Methods and Results:, The phylogram of 16S rRNA gene sequences inferred from the neighbour-joining method showed that nine clusters of Geobacillus species were characterized with bootstrap values >90%. The recA and rpoB sequences of 10 reference strains in clusters V, VIb and VIc were amplified and sequenced using consensus primers. Alignment of recA sequences in clusters V, VIb and VIc revealed three types of recA genes, consistent with the putative amino acid sequences and in vivo recA splicing analysis. The phylogram constructed from rpoB sequences showed more divergence than that constructed from 16S rRNA gene sequences. Conclusions:,recA and rpoB sequence analysis differentiated closely-related Geobacillus species and provided direct evidence for reclassifying some species dubiously categorized as Geobacilli. Additionally, this study revealed three types of recA genes in the different Geobacillus species. Significance and Impact of the Study:, This study highlights the advantage of recA and rpoB sequence analysis to supplement 16S rRNA gene sequence analysis for efficient and convenient determination of Geobacillus species. [source]


Fungal endophytes from Dioscorea zingiberensis rhizomes and their antibacterial activity

LETTERS IN APPLIED MICROBIOLOGY, Issue 1 2008
L. Xu
Abstract Aims:, The aim of the study was to isolate and characterize the endophytic fungi from the rhizomes of the Chinese traditional medicinal plant Dioscorea zingiberensis and to detect their antibacterial activities. Methods and Results:, After strict sterile sample preparation, nine fungal endophytes were isolated from rhizomes of the Chinese traditional medicinal plant D. zingiberensis. The endophytes were classified by morphological traits and internal transcribed spacer (ITS) rRNA gene sequence analysis. Their ITS rDNA sequences were 99,100% identical to Nectria, Fusarium, Rhizopycnis, Acremonium and Penicillium spp. respectively. Of these, the most frequent genera were Fusarium and Nectria. One isolate, Dzf7, was unclassified on the basis of its low sequence similarity. The next closest species was Alternaria longissima (c. 92ˇ4% sequence similarity). Endophyte isolate Dzf5 showed the closest sequence similarity (c. 99ˇ5%) to an uncultured soil fungus (DQ420800) obtained from Cedar Creek, USA. Bioassays using a modified broth dilution test were used to detect the antibacterial activity of n -butanol extracts of both mycelia and culture filtrates of D. zingiberensis showed biological activity against Bacillus subtilis, Staphylococcus haemolyticus, Escherichia coli and Xanthomonas vesicatoria. Minimal inhibitory concentration (MIC) values of the extracts were between 31ˇ25 ,g ml,1 and 125 ,g ml,1. Conclusions:, Endophytic fungus Dzf2 (c. 99ˇ8% sequence similarity to Fusarium redolens) isolated from D. zingiberensis rhizome showed the most potent antibacterial activities. Significance and Impact of the Study:, Endophytic fungi isolated from D. zingiberensis may be used as potential producers of antibacterial natural products. [source]


Molecular Characterization of the Obligate Endosymbiont "Caedibacter macronucleorum"Fokin and Görtz, 1993 and of its Host Paramecium duboscqui Strain Ku4-8

THE JOURNAL OF EUKARYOTIC MICROBIOLOGY, Issue 6 2006
MARTINA SCHRALLHAMMER
ABSTRACT. Bacterial endosymbionts of protozoa were often described as new species by protozoologists mainly on the basis of few morphological characters and partly by host specificity. Many of these species have never been validated by prokaryotic microbiologists whose taxonomic rules are quite different from those of protozoologists, who use the Zoological Code of Nomenclature. "Caedibacter macronucleorum"Fokin and Görtz 1993, an endosymbiont of Paramecium duboscqui, belongs to this category. Here we provide the molecular characterization of this organism and of its host P. duboscqui strain Ku4-8. Bacterial 16S rRNA gene sequence analysis proved that "C. macronucleorum" belongs to the Alphaproteobacteria. It is closely related to Caedibacter caryophilus but not to Caedibacter taeniospiralis, which belongs to the Gammaproteobacteria. "Caedibacter macronucleorum" and C. caryophilus 16S rRNA genes show a similarity value of 99%. This high 16S rRNA sequence similarity and the lack of a specific oligonucleotide probe for distinguishing the two endosymbionts do not allow validating "C. macronucleorum" as a provisional taxon (Candidatus). Nevertheless, "C. macronucleorum" and C. caryophilus can be easily discriminated on the basis of a highly variable stretch of nucleotides that interrupts the 16S rRNA genes of both organisms. [source]


Identification of gut-associated amylase, cellulase and protease-producing bacteria in three species of Indian major carps

AQUACULTURE RESEARCH, Issue 10 2010
Arun Kumar Ray
Abstract Isolation and enumeration of amylase, cellulase and protease-producing autochthonous bacteria in the proximal intestine (PI) and distal intestine (DI) of three species of Indian major carps, catla (Catla catla), mrigal (Cirrhinus mrigala) and rohu (Labeo rohita), were investigated using the conventional culture-based technique. Population levels of amylolytic strains were the highest in the PI of catla and the lowest in the DI of rohu. The highest viable count of cellulase and protease-producing bacteria was recorded in the DI and PI of mrigal respectively. Among the bacteria isolated, 10 strains (five from PI and five from DI) were selected as potent enzyme producers according to a quantitative enzyme assay. The chosen strains were further identified by 16S rRNA gene sequence analysis. The five strains isolated from catla showed high similarity to Citrobacter sp. clone W2, Enterobacter sp. JA24, Bacillus coagulans strain TR, uncultured bacterial clone Hel3bc04 and Bacillus cereus strain UST2006-BC004. The four strains isolated from mrigal were most closely related to Bacillus sp. KCd2, uncultured bacterial clone Hel3bd09, B. cereus strain BU040901-020 and Citrobacter freundii strain YRL11, while the strain isolated from rohu probably belonged to Bacillus sp. GV. [source]


Affinities of the freshwater red alga Audouinella macrospora (Florideophyceae, Rhodophyta) and related forms based on ssu rrna gene sequence analysis and pit plug ultrastructure

JOURNAL OF PHYCOLOGY, Issue 2 2000
Curt M. Pueschel
Small subunit rDNA sequencing and transmission electron microscopy were performed to clarify the ordinal affinities of Audouinella macrospora (Wood) Sheath et Burkholder isolates 3394, 3395, and 3603, as well as Chantransia sp. isolate 3585. Culture 3603 is known to produce thalli of Batrachospermum -like morphology under certain culture conditions. Sequence analyses unequivocally placed the three Audouinella macrospora isolates in a clade with Batrachospermum macrosporum Montagne of the Batrachospermales, and Chantransia sp. was found to have affinities with B. louisianae Skuja and B. virgato-decaisneanum Sirodot. The pit plugs of the Audouinella macrospora cultures 3394 and 3395 were nearly identical in size and structure, having thickened plug caps and no cap membranes. Both of these features agree with those of the Batrachospermaceae, with the latter feature showing batrachospermacean rather than acrochaetioid affinities. Pit plugs in the chantransia phase of 3603 were similar, but the plug caps were less well developed. The Batrachospermum phase generated from 3603 had pit plugs that were variable in diameter, according to location in the thallus, thus reflecting the more variable cell size in this phase. Dome-like outer caps, considered typical of Batrachospermum, were present between cells of the determinate lateral filaments. The pit plugs of Chantransia sp. had prominent, dome-like outer caps, but the plug cores were strikingly and consistently smaller in diameter than those of the A. macrospora chantransia cultures, suggesting that plug diameter may be of systematic value in some contexts. [source]