RNA Polymerase II (rna + polymerase_ii)

Distribution by Scientific Domains


Selected Abstracts


Phenotypic analysis of deflated/Ints7 function in Drosophila development

DEVELOPMENTAL DYNAMICS, Issue 5 2009
Rachael J. Rutkowski
Abstract The Drosophila gene deflated (CG18176; renamed after the pupal lethal abdominal phenotype of mutant individuals) is a member of a conserved gene family found in all multicellular organisms. The human orthologue of deflated (Ints7) encodes a subunit of the Integrator complex that associates with RNA polymerase II and has been implicated in snRNA processing. Since loss-of-function analyses of deflated have not yet been reported, we undertook to investigate deflated expression patterns and mutant phenotypes. deflated mRNA was detected at low levels in proliferating cells in postblastoderm embryos and GFP tagged protein is predominately nuclear. Generation and analysis of four mutant alleles revealed deflated is essential for normal development, as mutant individuals displayed pleiotropic defects affecting many stages of development, consistent with perturbation of cell signalling or cell proliferation. Our data demonstrate multiple roles in development for an Ints7 homologue and to demonstrate its requirement for normal cell signalling and proliferation. Developmental Dynamics 238:1131,1139, 2009. © 2009 Wiley-Liss, Inc. [source]


The histone deacetylase inhibitor MS-275 induces p21WAF1/Cip1 expression in human Hep3B hepatoma cells

DRUG DEVELOPMENT RESEARCH, Issue 2 2007
Haiyuan Zhang
Abstract MS-275 is a novel synthetic benzamide derivative histone deacetylase (HDAC) inhibitor, that has demonstrated antiproliferative activity in a variety of in vitro human cancer cell lines including breast, colon, lung, myeloma, ovary, pancreas, prostate, and leukemia. Currently, little information is available concerning the effects of MS-275 on liver cancer cells. In the current study, MS-275 was found to have potent actions against human hepatoma Hep3B cells including inhibition of cell proliferation and induction of apoptosis. MS-275 selectively up-regulated a cyclin-dependent kinase inhibitor, p21WAF1/Cip1 without alteration of p27WAF1. Expression of p21WAF1/Cip1 is considered to play a pivotal role in Hep3B cell growth arrest and induction of apoptosis. Induction of p21WAF1/Cip1 expression was accompanied by an accumulation of acetylated histones H3 and H4 associated specifically with p21WAF1/Cip1 gene. ChIP analysis revealed remarkable alterations in protein components bound to the promoter region of p21WAF1/Cip1 gene in response to MS-275 treatment. These included the degradation of HDAC1, HDAC3, and c-Myc, and as well as increased p300 and RNA polymerase II. The selective effect of MS-275 on the up-regulation of the p21WAF1/Cip1 gene whose expression was suppressed in the hepatoma cancer cell line indicated that it would be a very attractive approach in clinical liver cancer therapy. Drug Dev Res 68:61,70, 2007. © 2007 Wiley-Liss, Inc. [source]


Novel genes in cell cycle control and lipid metabolism with dynamically regulated binding sites for sterol regulatory element-binding protein 1 and RNA polymerase II in HepG2 cells detected by chromatin immunoprecipitation with microarray detection

FEBS JOURNAL, Issue 7 2009
Mehdi Motallebipour
Sterol regulatory element-binding proteins 1 and 2 (SREBP-1 and SREBP-2) are important regulators of genes involved in cholesterol and fatty acid metabolism, but have also been implicated in the regulation of the cell cycle and have been associated with the pathogenesis of type 2 diabetes, atherosclerosis and obesity, among others. In this study, we aimed to characterize the binding sites of SREBP-1 and RNA polymerase II through chromatin immunoprecipitation and microarray analysis in 1% of the human genome, as defined by the Encyclopaedia of DNA Elements consortium, in a hepatocellular carcinoma cell line (HepG2). Our data identified novel binding sites for SREBP-1 in genes directly or indirectly involved in cholesterol metabolism, e.g. apolipoprotein C-III (APOC3). The most interesting biological findings were the binding sites for SREBP-1 in genes for host cell factor C1 (HCFC1), involved in cell cycle regulation, and for filamin A (FLNA). For RNA polymerase II, we found binding sites at classical promoters, but also in intergenic and intragenic regions. Furthermore, we found evidence of sterol-regulated binding of SREBP-1 and RNA polymerase II to HCFC1 and FLNA. From the results of this work, we infer that SREBP-1 may be involved in processes other than lipid metabolism. [source]


Central forkhead domain of human TFIIE, plays a primary role in binding double-stranded DNA at transcription initiation

GENES TO CELLS, Issue 3 2009
Aki Tanaka
The human general transcription factor, TFIIE, consists of two subunits, , and ,. Structural analyses indicated the presence of a forkhead motif within the central region of TFIIE,. This motif was essential for transcription and possessed a double-stranded DNA-binding activity. Protein-DNA photo-cross-linking studies indicated that TFIIE, binds within the promoter region, adjacent to the transcription initiation site where promoter melting begins at transcription initiation. Furthermore, neither TFIIE nor the other general transcription factor TFIIH, were required for basal transcription of adenovirus major late promoter artificially pre-melted at the initiation site. These data suggest a model in which TFIIE binds to a position adjacent to the initiation site via the forkhead domain, enabling TFIIH to begin opening the promoter. Here, we used systematic point mutations to further investigate the functional roles of this domain. The mutant proteins were expressed in bacteria, purified and used to examine transcription of two different forms of template, phosphorylation of the C-terminal domain of RNA polymerase II, as well as dsDNA-binding. Taken together, our results strongly demonstrated that the primary function of the forkhead region is dsDNA-binding in transcription. In addition, we identified three positively charged lysine residues which play a key role in this function. [source]


RBP2 is an MRG15 complex component and down-regulates intragenic histone H3 lysine 4 methylation

GENES TO CELLS, Issue 6 2007
Tomohiro Hayakawa
MRG15 is a conserved chromodomain protein that associates with histone deacetylases (HDACs) and Tip60-containing histone acetyltransferase (HAT) complexes. Here we further characterize MRG15-containing complexes and show a functional link between MRG15 and histone H3K4 demethylase activity in mammalian cells. MRG15 was predominantly localized to discrete nuclear subdomains enriched for Ser2 -phosphorylated RNA polymerase II, suggesting it is involved specifically with active transcription. Protein analysis of the MRG15-containing complexes led to the identification of RBP2, a JmjC domain-containing protein. Remarkably, over-expression of RBP2 greatly reduced the H3K4 methylation in culture human cells in vivo, and recombinant RBP2 efficiently removed H3K4 methylation of histone tails in vitro. Knockdown of RBP2 resulted in increased H3K4 methylation levels within transcribed regions of active genes. Our findings demonstrate that RBP2 associated with MRG15 complex to maintain reduced H3K4 methylation at transcribed regions, which may ensure the transcriptional elongation state. [source]


Stimulation of RNA polymerase II transcript cleavage activity contributes to maintain transcriptional fidelity in yeast

GENES TO CELLS, Issue 5 2007
Hiroshi Koyama
The transcription elongation factor S-II, also designated TFIIS, stimulates the nascent transcript cleavage activity intrinsic to RNA polymerase II. Rpb9, a small subunit of RNA polymerase II, enhances the cleavage stimulation activity of S-II. Here, we investigated the role of nascent transcript cleavage stimulation activity on the maintenance of transcriptional fidelity in yeast. In yeast, S-II is encoded by the DST1 gene. Disruption of the DST1 gene decreased transcriptional fidelity in cells. Mutations in the DST1 gene that reduce the S-II cleavage stimulation activity led to decreased transcriptional fidelity in cells. A disruption mutant of the RPB9 gene also had decreased transcriptional fidelity. Expression of mutant Rpb9 proteins that are unable to enhance the S-II cleavage stimulation activity failed to restore the phenotype. These results suggest that both S-II and Rpb9 maintain transcriptional fidelity by stimulating the cleavage activity intrinsic to RNA polymerase II. Also, a DST1 and RPB9 double mutant had more severe transcriptional fidelity defect compared with the DST1 gene deletion mutant, suggesting that Rpb9 maintains transcriptional fidelity via two mechanisms, enhancement of S-II dependent cleavage stimulation and S-II independent function(s). [source]


Transcription elongation factor S-II maintains transcriptional fidelity and confers oxidative stress resistance

GENES TO CELLS, Issue 10 2003
Hiroshi Koyama
Background:, During transcription elongation, RNA polymerase II is arrested on the template when incorrect ribonucleotides are incorporated into the nascent transcripts. Transcription factor S-II enhances the excision of these mis-incorporated nucleotides by RNA polymerase II and stimulates transcription elongation in vitro. This mechanism is considered to be transcriptional proof-reading, but its physiological relevance remains unknown. Results:, We report that S-II contributes to the maintenance of transcriptional fidelity in vivo. We employed a genetic reporter assay utilizing a mutated lacZ gene from which active ,-galactosidase protein is expressed when mRNA proof-reading is compromised. In S-II-disrupted mutant yeasts, ,-galactosidase activity was ninefold higher than that in wild-type. The S-II mutant exhibited sensitivity to oxidants, which was suppressed by introduction of the S-II gene. The mutant S-II proteins, which are unable to stimulate transcription by RNA polymerase II in vitro, did not suppress the sensitivity of the mutants to oxidative stress or maintain transcriptional fidelity. Conclusion:, These results suggest that S-II confers oxidative stress resistance by providing an mRNA proof-reading mechanism during transcription elongation. [source]


Mechanism of H-8 inhibition of Cyclin-dependent kinase 9: study using inhibitor-immobilized matrices

GENES TO CELLS, Issue 3 2003
Daisuke Shima
Background: Positive transcription elongation factor b (P-TEFb), which phosphorylates the carboxyl-terminal domain (CTD) of RNA polymerase II (RNAPII), is comprised of the catalytic subunit cyclin-dependent kinase 9 (CDK9) and the regulatory subunit cyclin T. The kinase activity and transcriptional activation potential of P-TEFb is sensitive to various compounds, including H-8, 5,6-dichloro-1-,-d-ribofuranosylbenzimidazole (DRB), and flavopiridol. Results: We investigated the molecular mechanism of the H-8 inhibition of CDK9 using matrices to which H-9, an amino derivative of H-8, was immobilized. CDK9 bound specifically to H-9, and this interaction was competitively inhibited by ATP and DRB, but not by flavopiridol. Mutational analyses demonstrated that the central region of CDK9, which encompasses the T-loop region, was important for its binding to H-9. Conclusions: H-9-immobilized latex beads are useful for trapping CDK9 and a subset of kinases from crude cell extracts. The flavopiridol-binding region of CDK9 is most likely different from its H-9-binding region. These biochemical data support previously reported observations which were based on crystallographic data. [source]


Functional interaction of general transcription initiation factor TFIIE with general chromatin factor SPT16/CDC68

GENES TO CELLS, Issue 4 2000
Seung-Woo Kang
Background Transcriptional initiation of class II genes is one of the major targets for the regulation of gene expression and is carried out by RNA polymerase II and many auxiliary factors, which include general transcription initiation factors (GTFs). TFIIE, one of the GTFs, functions at the later stage of transcription initiation. As recent studies indicated the possibility that TFIIE may have a role in chromatin transcriptional regulation, we isolated TFIIE-interacting factors which have chromatin-related functions. Results Using the yeast two-hybrid screening system, we isolated the C-terminal part of the human homologue of Saccharomyces cerevisiae (y) Spt16p/Cdc68p, a general chromatin factor. The C-terminal part of human SPT16/CDC68 directly interacts with TFIIE, and ySpt16p/Cdc68p also interacts with yTFIIE (Tfa1p/Tfa2p), thus indicating the existence of an evolutionarily conserved interaction between TFIIE and SPT16/CDC68. Functional interaction of yTFIIE and ySpt16p/Cdc68p was examined using a conditional yTFIIE-, mutant strain. Over-expression of ySpt16p/Cdc68p suppressed the phenotype of cold sensitivity of the yTFIIE-,- cs mutant strain, and in vitro binding assays revealed that yTFIIE-,- cs mutant protein showed diminished binding affinity to ySpt16p/Cdc68p. Conclusions These observations indicate that general transcription initiation factor TFIIE functionally interacts with general chromatin factor SPT16/CDC68, a finding which provides new insight into the involvement of TFIIE in chromatin transcription. This may well lead to a breakthrough in relationships between the transcription initiation process and structural changes in chromatin. [source]


Increased genomic instability and altered chromosomal protein phosphorylation timing in HRAS -transformed mouse fibroblasts

GENES, CHROMOSOMES AND CANCER, Issue 5 2009
Katherine L. Dunn
The RAS-mitogen-activated protein kinase signaling pathway is often deregulated in cancer cells. In metastatic HRAS -transformed mouse fibroblasts (Ciras-3), the RAS-MAPK pathway is constitutively activated. We show here that Ciras-3 cells exhibit a higher incidence of chromosomal instability than 10T1/2 cells, including higher levels of clonal and nonclonal chromosomal aberrations. Stimulation of serum starved 10T1/2 and Ciras-3 cells with phorbol esters (TPA) results in the phosphorylation of histone H3 at serine 10 and serine 28. Regardless of the increased genomic instability in Ciras-3 cells, TPA-induced H3 phosphorylated at serine 10 and H3 phosphorylated at serine 28 partitioned into distinct nuclear subdomains as they did in the parental cells. However, the timing of the response of the H3 phosphorylation event to TPA induction was delayed in Ciras-3 cells. Further Ciras-3 cells, which have a more open chromatin structure, had increased steady state levels of phosphorylated H3 and HMGN1 relative to parental 10T1/2 cells. TPA-induced H3 phosphorylated at serine 10 and 28 were colocalized with the transcriptionally initiated form of RNA polymerase II in 10T1/2 and Ciras-3 cells. Chromatin immunoprecipitation assays demonstrated that TPA-induced H3 phosphorylation at serine 28 was associated with the immediate early JUN promoter, providing direct evidence that this histone post-translational modification is associated with transcriptionally active genes. Together our results demonstrate the increased genomic instability and alterations in the epigenetic program in HRAS -transformed cells. © 2009 Wiley-Liss, Inc. [source]


Robust support for tardigrade clades and their ages from three protein-coding nuclear genes

INVERTEBRATE BIOLOGY, Issue 2 2004
Jerome C. Regier
Abstract. Coding sequences (5,334 nt total) from elongation factor-1,, elongation factor-2, and the largest subunit of RNA polymerase II were determined for 6 species of Tardigrada, 2 of Arthropoda, and 2 of Onychophora. Parsimony and likelihood analyses of nucleotides and amino acids yielded strong support for Tardigrada and all internal nodes (i.e., 100% bootstrap support for Tardigrada, Eutardigrada, Parachela, Hypsibiidae, and Macrobiotidae). Results are in agreement with morphology and an earlier molecular study based on analysis of 18S ribosomal sequences. Divergence times have been estimated from amino acid sequence data using an empirical Bayesian statistical approach, which does not assume a strict molecular clock. Divergence time estimates are pre-Vendian for Tardigrada/Arthropoda, Vendian or earlier for Eutardigrada/Heterotardigrada, Silurian to Ordovician for Parachela/Apochela, Permian to Carboniferous for Hypsibiidae and Macrobiotidae, and Mesozoic for Isohypsibius/Thulinia (both within Hypsibiidae) and Macrobiotus/Richtersius (both within Macrobiotidae). [source]


Curcumin downregulates H19 gene transcription in tumor cells

JOURNAL OF CELLULAR BIOCHEMISTRY, Issue 5 2008
Renata Novak Kujund
Abstract Curcumin (diferuloymethane), a natural compound used in traditional medicine, exerts an antiproliferative effect on various tumor cell lines by an incompletely understood mechanism. It has been shown that low doses of curcumin downregulate DNA topoisomerase II alpha (TOP2A) which is upregulated in many malignances. The activity of TOP2A is required for RNA polymerase II transcription on chromatin templates. Recently, it has been reported that CTCF, a multifunctional transcription factor, recruits the largest subunit of RNA polymerase II (LS Pol II) to its target sites genome-wide. This recruitment of LS Pol II is more pronounced in proliferating cells than in fully differentiated cells. As expression of imprinted genes is often altered in tumors, we investigated the potential effect of curcumin treatment on transcription of the imprinted H19 gene, located distally from the CTCF binding site, in human tumor cell lines HCT 116, SW 620, HeLa, Cal 27, Hep-2 and Detroit 562. Transcription of TOP2A and concomitantly H19 was supressed in all tumor cell lines tested. Monoallelic IGF2 expression was maintained in curcumin-treated cancer cells, indicating the involvement of mechanism/s other than disturbance of CTCF insulator function at the IGF2/H19 locus. Curcumin did not alter H19 gene transcription in primary cell cultures derived from normal human tissues. J. Cell. Biochem. 104: 1781,1792, 2008. © 2008 Wiley-Liss, Inc. [source]


Nuclear myosin I is necessary for the formation of the first phosphodiester bond during transcription initiation by RNA polymerase II

JOURNAL OF CELLULAR BIOCHEMISTRY, Issue 4 2006
Wilma A. Hofmann
Abstract The nuclear isoform of myosin, Nuclear Myosin I (NMI) is involved in transcription by RNA polymerase I. Previous experiments showing that antibodies to NMI inhibit transcription by RNA polymerase II using HeLa cell nuclear extract (NE) suggested that NMI might be a general transcription factor for RNA polymerases. In this study we used a minimal in vitro transcription system to investigate the involvement of NMI in transcription by RNA polymerase II in detail. We demonstrate that NMI co-purifies with RNA polymerase II and that NMI is necessary for basal transcription by RNA polymerase II because antibodies to NMI inhibit transcription while adding NMI stimulates transcription. Further investigation revealed that NMI is specifically involved in transcription initiation. Finally, by employing an abortive transcription initiation assay, we demonstrate that NMI is crucial for the formation of the first phosphodiester bond during transcription initiation. J. Cell. Biochem. 99: 1001,1009, 2006. © 2006 Wiley-Liss, Inc. [source]


Effects of phosphorylation by protein kinase CK2 on the human basal components of the RNA polymerase II transcription machinery

JOURNAL OF CELLULAR BIOCHEMISTRY, Issue 1 2004
María Eugenia Cabrejos
Abstract We have investigated the role of phosphorylation by vertebrate protein kinase CK2 on the activity of the General Transcription Factors TFIIA, TFIIE, TFIIF, and RNAPII. The largest subunits of TFIIA, TFIIE, and TFIIF were phosphorylated by CK2 holoenzyme. Also, RNA polymerase II was phosphorylated by CK2 in the 214,000 and 20,500 daltons subunits. Our results show that phosphorylation of TFIIA, TFIIF, and RNAPII increase the formation of complexes on the TATA box of the Ad-MLP promoter. Also, phosphorylation of TFIIF increases the formation of transcripts, where as phosphorylation of RNA polymerase II dramatically inhibits transcript formation. Furthermore, we demonstrate that CK2, directly interacts with RNA polymerase II, TFIIA, TFIIF, and TBP. These results strongly suggest that CK2 may play a role in regulating transcription of protein coding genes. © 2004 Wiley-Liss, Inc. [source]


Sp proteins play a critical role in histone deacetylase inhibitor-mediated derepression of CYP46A1 gene transcription

JOURNAL OF NEUROCHEMISTRY, Issue 2 2010
Maria Joăo Nunes
J. Neurochem. (2010) 113, 418,431. Abstract We investigated whether the CYP46A1 gene, a neuronal-specific cytochrome P450, responsible for the majority of brain cholesterol turnover, is subject to transcriptional modulation through modifications in histone acetylation. We demonstrated that inhibition of histone deacetylase activity by trichostatin A (TSA), valproic acid and sodium butyrate caused a potent induction of both CYP46A1 promoter activity and endogenous expression. Silencing of Sp transcription factors through specific small interfering RNAs, or impairing Sp binding to the proximal promoter, by site-directed mutagenesis, led to a significant decrease in TSA-mediated induction of CYP46A1 expression/promoter activity. Electrophoretic mobility shift assay, DNA affinity precipitation assays and chromatin immunoprecipitation assays were used to determine the multiprotein complex recruited to the CYP46A1 promoter, upon TSA treatment. Our data showed that a decrease in Sp3 binding at particular responsive elements, can shift the Sp1/Sp3/Sp4 ratio, and favor the detachment of histone deacetylase (HDAC) 1 and HDAC2 and the recruitment of p300/CBP. Moreover, we observed a dynamic change in the chromatin structure upon TSA treatment, characterized by an increase in the local recruitment of euchromatic markers and RNA polymerase II. Our results show the critical participation of an epigenetic program in the control of CYP46A1 gene transcription, and suggest that brain cholesterol catabolism may be affected upon treatment with HDAC inhibitors. [source]


Pharmacological targeting of CDK9 in cardiac hypertrophy

MEDICINAL RESEARCH REVIEWS, Issue 4 2010
Vladimír Kry
Abstract Cardiac hypertrophy allows the heart to adapt to workload, but persistent or unphysiological stimulus can result in pump failure. Cardiac hypertrophy is characterized by an increase in the size of differentiated cardiac myocytes. At the molecular level, growth of cells is linked to intensive transcription and translation. Several cyclin-dependent kinases (CDKs) have been identified as principal regulators of transcription, and among these CDK9 is directly associated with cardiac hypertrophy. CDK9 phosphorylates the C -terminal domain of RNA polymerase II and thus stimulates the elongation phase of transcription. Chronic activation of CDK9 causes not only cardiac myocyte enlargement but also confers predisposition to heart failure. Due to the long interest of molecular oncologists and medicinal chemists in CDKs as potential targets of anticancer drugs, a portfolio of small-molecule inhibitors of CDK9 is available. Recent determination of CDK9's crystal structure now allows the development of selective inhibitors and their further optimization in terms of biochemical potency and selectivity. CDK9 may therefore constitute a novel target for drugs against cardiac hypertrophy. © 2009 Wiley Periodicals, Inc. Med Res Rev 30, No. 4, 646,666, 2010 [source]


The regulation of HIV-1 transcription: Molecular targets for chemotherapeutic intervention

MEDICINAL RESEARCH REVIEWS, Issue 5 2006
Miguel Stevens
Abstract The regulation of transcription of the human immunodeficiency virus (HIV) is a complex event that requires the cooperative action of both viral and cellular components. In latently infected resting CD4+ T cells HIV-1 transcription seems to be repressed by deacetylation events mediated by histone deacetylases (HDACs). Upon reactivation of HIV-1 from latency, HDACs are displaced in response to the recruitment of histone acetyltransferases (HATs) by NF-,B or the viral transcriptional activator Tat and result in multiple acetylation events. Following chromatin remodeling of the viral promoter region, transcription is initiated and leads to the formation of the TAR element. The complex of Tat with p-TEFb then binds the loop structures of TAR RNA thereby positioning CDK9 to phosphorylate the cellular RNA polymerase II. The Tat-TAR-dependent phosphorylation of RNA polymerase II plays an important role in transcriptional elongation as well as in other post-transcriptional events. As such, targeting of Tat protein (and/or cellular cofactors) provide an interesting perspective for therapeutic intervention in the HIV replicative cycle and may afford lifetime control of the HIV infection. © 2006 Wiley Periodicals, Inc. Med Res Rev, 26, No. 5, 595,625, 2006 [source]


Rpc25, a conserved RNA polymerase III subunit, is critical for transcription initiation

MOLECULAR MICROBIOLOGY, Issue 1 2005
Cécile Zaros
Summary Rpc25 is a strongly conserved subunit of RNA polymerase III with homology to Rpa43 in RNA polymerase I, Rpb7 in RNA polymerase II and the archaeal RpoE subunit. A central domain of Rpc25 can replaced the corresponding region of Rpb7 with little or no growth defect, underscoring the functional relatedness of these proteins. Rpc25 forms a heterodimer with Rpc17, another conserved component of RNA polymerase III. A conditional mutant (rpc25-S100P) impairs this interaction. rpc25-S100P and another conditional mutant obtained by complementation with the Schizosaccharomyces pombe subunit (rpc25-Sp) were investigated for the properties of their purified RNA polymerase III. The mutant enzymes were defective in the specific synthesis of pre-tRNA transcripts but acted at a wild-type level on poly[d(A-T)] templates. They were also indistinguishable from wild type in transcript elongation, cleavage and termination. These data indicate that Rpc25 is needed for transcription initiation but is not critical for the elongating properties of RNA polymerase III. [source]


Dynamics of lamin A/C in porcine embryos produced by nuclear transfer

MOLECULAR REPRODUCTION & DEVELOPMENT, Issue 9 2007
Kiho Lee
Abstract This study was conducted to investigate the presence of lamin A/C in porcine nuclear transfer embryos and to determine whether lamin A/C can serve as a potential marker for nuclear reprogramming. First, lamin A/C was studied in oocytes and embryos produced by fertilization or parthenogenetic oocyte activation. We found that lamin A/C was present in the nuclear lamina of oocytes at the germinal vesicle stage while it was absent in mature oocytes. Lamin A/C was detected throughout preimplantation development in both in vivo-derived and parthenogenetic embryos. Incubation of the activated oocytes in the presence of ,-amanitin (an inhibitor of RNA polymerase II), or cycloheximide (a protein synthesis inhibitor) did not perturb lamin A/C assembly, indicating that the assembly resulted from solubilized lamins dispersed in the cytoplasm. In nuclear transfer embryos, the lamin A/C signal that had previously been identified in fibroblast nuclei disappeared soon after fusion. It became detectable again after the formation of the pronucleus-like structure, and all nuclear transfer embryos displayed lamin A/C staining during early development. Olfactory bulb progenitor cells lacked lamin A/C; however, when such cells were fused with enucleated oocytes, the newly formed nuclear envelopes stained positive for lamin A/C. These findings suggest that recipient oocytes remodel the donor nuclei using type A lamins dispersed in the ooplasm. The results also indicate that lamin A/C is present in the nuclear envelope of pig oocytes and early embryos and unlike in some other species, its presence after nuclear transfer is not an indicator of erroneous reprogramming. Mol. Reprod. Dev. 74: 1221,1227, 2007. © 2007 Wiley-Liss, Inc. [source]


Lentivirus-mediated bifunctional cell labeling for in vivo melanoma study

PIGMENT CELL & MELANOMA RESEARCH, Issue 3 2009
Chi-Ping Day
Summary Lentiviral vectors (LVs) are capable of labeling a broad spectrum of cell types, achieving stable expression of transgenes. However, for in vivo studies, the duration of marker gene expression has been highly variable. We have developed a series of LVs harboring different promoters for expressing reporter gene in mouse cells. Long-term culture and colony formation of several LV-labeled mouse melanoma cells showed that promoters derived from mammalian house-keeping genes, especially those encoding RNA polymerase II (Pol2) and ferritin (FerH), provided the highest consistency for reporter expression. For in vivo studies, primary B16BL6 mouse melanoma were infected with LVs whose luciferase,green fluorescence protein fusion gene (Luc/GFP) was driven by either Pol2 or FerH promoters. When transplanted into syngeneic C57BL/6 mice, Luc/GFP-labeled B16BL6 mouse melanoma cells can be monitored by bioluminescence imaging in vivo, and GFP-positive cells can be isolated from the tumors by fluorescence-activated cell sorter. Pol2-Luc/GFP labeling, while lower in activity, was more sustainable than FerH-Luc/GFP labeling in B16BL6 over consecutive passages into mice. We conclude that Pol-2-Luc/GFP labeling allows long-term in vivo monitoring and tumor cell isolation in immunocompetent mouse melanoma models. [source]


Structural characterization of human general transcription factor TFIIF in solution

PROTEIN SCIENCE, Issue 3 2008
Satoko Akashi
Abstract Human general transcription factor IIF (TFIIF), a component of the transcription pre-initiation complex (PIC) associated with RNA polymerase II (Pol II), was characterized by size-exclusion chromatography (SEC), electrospray ionization mass spectrometry (ESI-MS), and chemical cross-linking. Recombinant TFIIF, composed of an equimolar ratio of , and , subunits, was bacterially expressed, purified to homogeneity, and found to have a transcription activity similar to a natural one in the human in vitro transcription system. SEC of purified TFIIF, as previously reported, suggested that this protein has a size >200 kDa. In contrast, ESI-MS of the purified sample gave a molecular size of 87 kDa, indicating that TFIIF is an ,, heterodimer, which was confirmed by matrix-assisted laser desorption/ionization (MALDI) MS of the cross-linked TFIIF components. Recent electron microscopy (EM) and photo-cross-linking studies showed that the yeast TFIIF homolog containing Tfg1 and Tfg2, corresponding to the human , and , subunits, exists as a heterodimer in the PIC, so the human TFIIF is also likely to exist as a heterodimer even in the PIC. In the yeast PIC, EM and photo-cross-linking studies showed different results for the mutual location of TFIIE and TFIIF along DNA. We have examined the direct interaction between human TFIIF and TFIIE by ESI-MS, SEC, and chemical cross-linking; however, no direct interaction was observed, at least in solution. This is consistent with the previous photo-cross-linking observation that TFIIF and TFIIE flank DNA separately on both sides of the Pol II central cleft in the yeast PIC. [source]


Structure of a (Cys3His) zinc ribbon, a ubiquitous motif in archaeal and eucaryal transcription

PROTEIN SCIENCE, Issue 9 2000
Hung-Ta Chen
Abstract Transcription factor IIB (TFIIB) is an essential component in the formation of the transcription initiation complex in eucaryal and archaeal transcription. TFIIB interacts with a promoter complex containing the TATA-binding protein (TBP) to facilitate interaction with RNA polymerase II (RNA pol II) and the associated transcription factor IIF (TFIIF). TFIIB contains a zinc-binding motif near the N-terminus that is directly involved in the interaction with RNA pol II/ TFIIF and plays a crucial role in selecting the transcription initiation site. The solution structure of the N-terminal residues 2,59 of human TFIIB was determined by multidimensional NMR spectroscopy. The structure consists of a nearly tetrahedral Zn(Cys)3(His)1 site confined by type I and "rubredoxin" turns, three antiparallel ,,strands, and disordered loops. The structure is similar to the reported zinc-ribbon motifs in several transcription-related proteins from archaea and eucarya, including Pyrococcus furiosus transcription factor B (PfTFB), human and yeast transcription factor IIS (TFIIS), and Thermococcus celer RNA polymerase II subunit M (TcRPOM). The zinc-ribbon structure of TFIIB, in conjunction with the biochemical analyses, suggests that residues on the ,,sheet are involved in the interaction with RNA pol II/TFIIF, while the zinc-binding site may increase the stability of the ,,sheet. [source]


Structure,function studies of the RNA polymerase II elongation complex

ACTA CRYSTALLOGRAPHICA SECTION D, Issue 2 2009
Florian Brueckner
RNA polymerase II (Pol II) is the eukaryotic enzyme that is responsible for transcribing all protein-coding genes into messenger RNA (mRNA). The mRNA-transcription cycle can be divided into three stages: initiation, elongation and termination. During elongation, Pol II moves along a DNA template and synthesizes a complementary RNA chain in a processive manner. X-ray structural analysis has proved to be a potent tool for elucidating the mechanism of Pol II elongation. Crystallographic snapshots of different functional states of the Pol II elongation complex (EC) have elucidated mechanistic details of nucleotide addition and Pol II translocation. Further structural studies in combination with in vitro transcription experiments led to a mechanistic understanding of various additional features of the EC, including its inhibition by the fungal toxin ,-amanitin, the tunability of the active site by the elongation factor TFIIS, the recognition of DNA lesions and the use of RNA as a template. [source]


The effect of ,-amanitin on RNA polymerase II ubiquitination,

BIOCHEMISTRY AND MOLECULAR BIOLOGY EDUCATION, Issue 5 2006
Jozsef Szeberenyi
Terms to be familiar with before you start to solve the test: RNA polymerase II, transcription, ,-amanitin, protein ubiquitination, synchronization of cell cultures, affinity adsorption, SDS-polyacrylamide gel electrophoresis, Western blotting, protein phosphorylation, protein kinases, in vitro transcription, plasmid, promoter, general and regulatory transcription factors, autoradiography. [source]


Crystallization and preliminary crystallographic analysis of eukaryotic transcription and mRNA export factor Iws1 from Encephalitozoon cuniculi

ACTA CRYSTALLOGRAPHICA SECTION F (ELECTRONIC), Issue 2 2010
Michael Koch
Transcription elongation by eukaryotic RNA polymerase II requires the coupling of mRNA synthesis and mRNA processing and export. The essential protein Iws1 is at the interface of these processes through its interaction with histone chaperone and elongation factor Spt6 as well as with complexes involved in mRNA processing and export. Upon crystallization of the evolutionarily conserved domain of Iws1 from Encephalitozoon cuniculi, four different crystal forms were obtained. Three of the crystal forms belonged to space group P21 and one belonged to space group P2221. Preliminary X-ray crystallographic analysis of one of the crystal forms allowed the collection of data to 2.5,Ĺ resolution. [source]


When machines get stuck,obstructed RNA polymerase II: displacement, degradation or suicide

BIOESSAYS, Issue 9 2002
Vincent van den Boom
The severe hereditary progeroid disorder Cockayne syndrome is a consequence of a defective transcription-coupled repair (TCR) pathway. This special mode of DNA repair aids a RNA polymerase that is stalled by a DNA lesion in the template and ensures efficient DNA repair to permit resumption of transcription and prevent cell death. Although some key players in TCR, such as the Cockayne syndrome A (CSA) and B (CSB) proteins have been identified, the exact molecular mechanism still remains illusive. A recent report provides new unexpected insights into TCR in yeast.1 The identification and characterisation of a novel protein co-purifying with the yeast homologue of CSB (Rad26) imposes reassessment of our current understanding of TCR in yeast. What about humans? BioEssays 24:780,784, 2002. © 2002 Wiley Periodicals, Inc. [source]


Phylogeny, diversification patterns and historical biogeography of euglossine orchid bees (Hymenoptera: Apidae)

BIOLOGICAL JOURNAL OF THE LINNEAN SOCIETY, Issue 3 2010
SANTIAGO R. RAMÍREZ
The orchid bees constitute a clade of prominent insect pollinators distributed throughout the Neotropical region. Males of all species collect fragrances from natural sources, including flowers, decaying vegetation and fungi, and store them in specialized leg pockets to later expose during courtship display. In addition, orchid bees provide pollination services to a diverse array of Neotropical angiosperms when foraging for food and nesting materials. However, despite their ecological importance, little is known about the evolutionary history of orchid bees. Here, we present a comprehensive molecular phylogenetic analysis based on ,4.0 kb of DNA from four loci [cytochrome oxidase (CO1), elongation factor 1-, (EF1 -,), arginine kinase (ArgK) and RNA polymerase II (Pol-II)] across the entire tribe Euglossini, including all five genera, eight subgenera and 126 of the approximately 200 known species. We investigated lineage diversification using fossil-calibrated molecular clocks and the evolution of morphological traits using disparity-through-time plots. In addition, we inferred past biogeographical events by implementing model-based likelihood methods. Our dataset supports a new view on generic relationships and indicates that the cleptoparasitic genus Exaerete is sister to the remaining orchid bee genera. Our divergence time estimates indicate that extant orchid bee lineages shared a most recent common ancestor at 27,42 Mya. In addition, our analysis of morphology shows that tongue length and body size experienced rapid disparity bursts that coincide with the origin of diverse genera (Euglossa and Eufriesea). Finally, our analysis of historical biogeography indicates that early diversification episodes shared a history on both sides of Mesoamerica, where orchid bees dispersed across the Caribbean, and through a Panamanian connection, thus reinforcing the hypothesis that recent geological events (e.g. the formation of the isthmus of Panama) contributed to the diversification of the rich Neotropical biota. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 100, 552,572. [source]


High-resolution structure of the native histone octamer

ACTA CRYSTALLOGRAPHICA SECTION F (ELECTRONIC), Issue 6 2005
Christopher M. Wood
Crystals of native histone octamers (H2A,H2B),(H4,H3),(H3,,H4,),(H2B,,­H2A,) from chick erythrocytes in 2,M KCl, 1.35,M potassium phosphate pH 6.9 diffract X-rays to 1.90,Ĺ resolution, yielding a structure with an Rwork value of 18.7% and an Rfree of 22.2%. The crystal space group is P65, the asymmetric unit of which contains one complete octamer. This high-resolution model of the histone-core octamer allows further insight into intermolecular interactions, including water molecules, that dock the histone dimers to the tetramer in the nucleosome-core particle and have relevance to nucleosome remodelling. The three key areas analysed are the H2A,,H3,H4 molecular cluster (also H2A,H3,,H4,), the H4,H2B, interaction (also H4,,H2B) and the H2A,,H4 ,-sheet interaction (also H2A,H4,). The latter of these three regions is important to nucleosome remodelling by RNA polymerase II, as it is shown to be a likely core-histone binding site, and its disruption creates an instability in the nucleosome-core particle. A majority of the water molecules in the high-resolution octamer have positions that correlate to similar positions in the high-­resolution nucleosome-core particle structure, suggesting that the high-resolution octamer model can be used for comparative studies with the high-resolution nucleosome-core particle. [source]


Glucocorticoid resistance in a multiple myeloma cell line is regulated by a transcription elongation block in the glucocorticoid receptor gene (NR3C1)

BRITISH JOURNAL OF HAEMATOLOGY, Issue 6 2009
Beatriz Sánchez-Vega
Summary Glucocorticoid (GC) effects are mediated by the glucocorticoid receptor (GR). Several studies have demonstrated that a lower number of receptors per cell were associated with poor GC response. The regulation of GR expression is complex; the levels of GR can be autologously regulated by its ligand and also by transcriptional, post-transcriptional and post-translational mechanisms. Using three human myeloma cell lines that parallel the development of GC resistance, this work describes the mechanism involved in the downregulation of GR expression. The decreased expression was neither due to mutations in the gene encoding GR, NR3C1, nor due to methylation of the promoters. A gradual decrease in NR3C1 transcripts was seen during the development of resistance, the level of expression of exon 1 to 2 RNA fragments remained the same in sensitive and resistant cell lines but a chromatin immunoprecipitation assay demonstrated that RNA polymerase II, detectable throughout exon 2 to 3 in the sensitive cells, was undetectable on exon 3 in the resistant variant, suggesting lower or no transcription at this site. These studies demonstrated that downregulation of NR3C1 mRNA in a resistant cell line involves a block to transcriptional elongation within intron B of NR3C1. This block may represent an important element in the regulation of GR expression. [source]