RNA Duplex (rna + duplex)

Distribution by Scientific Domains


Selected Abstracts


Structure of the ,-Homo-DNA:RNA Duplex and the Function of Twist and Slide To Catalogue Nucleic Acid Duplexes

CHEMISTRY - A EUROPEAN JOURNAL, Issue 1 2007
Koen Nauwelaerts Dr.
Abstract High-resolution NMR studies of an ,-homo-DNA:RNA duplex reveal the formation of a right-handed parallel-oriented helix. It differs significantly from a standard A- or B-type helix by a small twist value (26.2°), which leads to a helical pitch of 13.7 base pairs per helical turn, a negative inclination (,1.78 Å) and a large x displacement (5.90 Å). The rise (3.4 Å) is similar to that found in B-DNA. The solution of this new helix structure has stimulated us to develop a mathematical and geometrical model based on slide and twist parameters to describe nucleic acid duplexes. All existing duplexes can be positioned within this landscape, which can be used to understand the helicalization process. [source]


A molecular dynamics study on binding recognition between several 4,5 and 4,6-linked aminoglycosides with A-site RNA

JOURNAL OF MOLECULAR RECOGNITION, Issue 5 2010
Shih-Yuan Chen
Abstract A molecular dynamics (MD) simulation has been performed for two sets of aminoglycoside antibiotics bound with an RNA duplex corresponding to the aminoacyl-tRNA decoding site of the 16S rRNA to characterize the energetics and dynamics of binding for several aminoglycosides. The binding free energy, essential dynamics and hydration analysis have been conducted to characterize the dynamics' properties associated with the binding recognition between each set of antibiotics and the RNA duplex. We have built several dynamic models with reasonable binding free energies showing good correlation with the experimental data. We have also conducted a hydration analysis on some long residency water molecules detected as W8 and W49 sites around the U1406,·,U1495 pair and which are found to be important in binding recognition and in causing some apparent stretch variations of this pair during the dynamic studies. In addition, we also find that the hydration sites with long residence time identified between the ring III of two 4,6-linked antibiotics (tobramycin and kanamycin) and phosphate oxygen atoms of G1405/U1406 may be worthy of further exploration for rational drug design. Copyright © 2009 John Wiley & Sons, Ltd. [source]


Metabolite identification of small interfering RNA duplex by high-resolution accurate mass spectrometry

RAPID COMMUNICATIONS IN MASS SPECTROMETRY, Issue 12 2008
Yan Zou
On-line liquid chromatography/electrospray ionization high-resolution mass spectrometry (LC/ESI-HRMS) using an LTQ-Orbitrap mass spectrometer was employed to investigate the metabolite profiles of a model siRNA duplex designated HBV263. The HBV263 duplex was incubated in rat and human serum and liver microsomes in vitro. The siRNA drug and its metabolites were then extracted using a liquid-liquid extraction followed by solid-phase extraction (LLE-SPE), and analyzed by LC/ESI-MS. High-resolution accurate mass data enabled differentiation between two possible metabolite sequences with a monoisotopic molecular mass difference of less than 1,Da. ProMass deconvolution software was used to provide semi-automated data processing. In vitro serum and liver microsome incubation samples afforded different metabolite patterns: the antisense strand of the duplex was degraded preferentially in rat and human serum, while the sense strand of the duplex was less stable in rat and human liver microsomes. Copyright © 2008 John Wiley & Sons, Ltd. [source]


First look at RNA in l -configuration

ACTA CRYSTALLOGRAPHICA SECTION D, Issue 1 2004
RNA in l -configuration
Nucleic acid molecules in the mirror image or l -configuration are unknown in nature and are extraordinarily resistant to biological degradation. The identification of functional l -­oligonucleotides called Spiegelmers offers a novel approach for drug discovery based on RNA. The sequence r(CUGGGCGG)·r(CCGCCUGG) was chosen as a model system for structural analysis of helices in the l -configuration as the structure of the d -form of this sequence has previously been determined in structural studies of 5S RNA domains, in particular domain E of the Thermus flavus 5S rRNA [Perbandt et al. (2001), Acta Cryst. D57, 219,224]. Unexpectedly, the results of crystallization trials showed little similarity between the d - and the l -forms of the duplex in either the crystallization hits or the diffraction performance. The crystal structure of this l -RNA duplex has been determined at 1.9,Å resolution with Rwork and Rfree of 23.8 and 28.6%, respectively. The crystals belong to space group R32, with unit-cell parameters a = 45.7, c = 264.6,Å. Although there are two molecules in the asymmetric unit rather than one, the structure of the l -form arranges helical pairs in a head-to-tail fashion to form pseudo-continuous infinite helices in the crystal as in the d -form. On the other hand, the wobble-like G·C+ base pair seen in the D-RNA analogue does not appear in the l -RNA duplex, which forms a regular double-helical structure with typical Watson,Crick base pairing. [source]


Destabilizing effect of a fluorouracil extra base in a hybrid RNA duplex compared with bromo and chloro analogues

ACTA CRYSTALLOGRAPHICA SECTION D, Issue 11 2001
William Cruse
In the presence of cobalt, rhodium or iridium hexammine salts, the RNA/DNA hybrid r-GCUUCGGC-dXU (with X = F, Cl or Br) crystallizes as a double-stranded helix with four consec­utive G,U and C,U mismatches. The deoxy chloro- and bromouracil derivatives are isomorphous, space group C2, unit-cell parameters a = 53.80, b = 19.40, c = 50.31,Å, , = 109.9°, with the same infinite helix arrangement in the packing along the c axis with one extra DNA halogenouracil base included in the stacking. However, the fluorouracil derivative, with unit-cell parameters a = 53.75, b = 19.40, c = 45.84,Å, , = 105.7°, is not isomorphous. The corresponding extra DNA base dFU of the second strand is ejected out of the helical stack, leading to a shortening of the c axis. The specific destabilization of the fluorouracil for the duplex building is analyzed in terms of the polarization effect of the halogen atom attached to the 3,-­terminal base that modulates its interactions. [source]


XNA, (xylo Nucleic Acid): A Summary and New Derivatives

EUROPEAN JOURNAL OF ORGANIC CHEMISTRY, Issue 11 2005
B. Ravindra Babu
Abstract Fully modified homopyrimidine 2'-deoxy- xylo nucleic acid (dXNA) form triple helixes with complementary DNA/RNA with thermal stabilities comparable to those of the corresponding DNA:DNA and DNA:RNA duplexes. However, a single or few insertions of dXNA monomers in a DNA strand significantly lower duplex stabilities. The dXNA monomers are known to adopt predominantly an N -type furanose conformation in solution. With a desire to increase the binding affinity, seven sugar-modified XNA monomers (H, F, N, M, K, P and Q) have been synthesised and their effect on hybridization towards DNA and RNA complements studied. The introduction of 2'-fluoro and 2'-hydroxy substituents was expected to induce conformational restriction towards C3'- endo -type furanose conformation of monomer F derived from 1-(2'-deoxy-2'-fluoro-,- D -xylofuranosyl)thymine and monomer H derived from 1-(,- D -xylofuranosyl)thymine. The presence of functionalites facing the minor groove as in 1-(2'-amino-2'-deoxy-2'- N,4'- C -methylene-,- D -xylofuranosyl)thymine (monomer N), 1-[4- C -(N -methylpiperazinyl)methyl-,- D -xylofuranosyl]thymine (monomer P), 1-(4- C -piperazinylmethyl-,- D -xylofuranosyl)thymine (monomer Q), 1-(4- C -hydroxymethyl-,- D -xylofuranosyl)thymine (monomer M) and 9-(4- C -hydroxymethyl-,- D -xylofuranosyl)adenine (monomer K) was studied, with monomer N being locked in an N -type furanose conformation. Besides, an efficient synthesis of known xylo -LNA phosphoramidite 19, required for the incorporation of 1-(2'- O,4'- C -methylene-,- D -xylofuranosyl)thymine (monomer L) is described. For comparison, hydridization data of various XNAs reported in the literature are included in the discussion section. The thermal denaturation studies show that XNAs containing conformationally locked monomers (N and L) display improved binding affinity, and that partially modified DNA/XNA chimera, or fully modified XNA display preferential hybridization towards RNA complements. (© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2005) [source]


Hepatitis C virus escape from the interferon regulatory factor 3 pathway by a passive and active evasion strategy,

HEPATOLOGY, Issue 5 2007
Marco Binder
Hepatitis C virus (HCV) has been known to replicate with extremely varying efficiencies in different host cells, even within different populations of a single human hepatoma cell line, termed Huh-7. Several reports have implicated the retinoic-acid inducible gene I (RIG-I)/ interferon regulatory factor 3 (IRF-3) pathway of the innate antiviral response with differences in host cell permissiveness to HCV. To investigate the general impact of the IRF-3 response onto HCV replication in cell culture, we generated an ample array of stable Huh-7 cell lines with altered IRF-3 responsiveness. Neither blocking IRF-3 activation in various host cells by expression of dominant negative RIG-I or HCV NS3/4A protease nor reconstitution of RIG-I signaling in Huh7.5, a cell clone known to be defective in this pathway, had any impact on HCV replication. Only by overexpressing constitutively active RIG-I or the signaling adaptor Cardif (also known as interferon-beta promoter stimulator 1, mitochondrial anti-viral signaling protein, or virus-induced signaling adaptor), both leading to a stimulation of the IRF-3 pathway in the absence of inducers, was HCV replication significantly inhibited. We therefore assessed the extent of RIG-I, dependent IRF-3 activation by different species of RNA, including full-length HCV genomes and HCV RNA duplexes, and observed strong induction only in response to double-stranded RNAs. Conclusion: Based on these findings, we propose a refined model of innate immune escape by HCV involving limited initial induction and stringent subsequent control of the IRF-3 response. (HEPATOLOGY 2007.) [source]


Minimum sequence requirements for the binding of paromomycin to the rRNA decoding site A

BIOPOLYMERS, Issue 2 2007
Peter C. Anderson
Abstract We have recently introduced a computational methodology that combines molecular dynamics (MD) simulations, free-energy calculations, and in vitro binding assays to predict the minimum RNA structural requirements for selective, high-affinity RNA binding to small-molecule ligands. Here, we show that this methodology can be applied to the conformationally flexible aminoglycoside antibiotic paromomycin. A RNA consisting of an 11-mer:10-mer duplex that contains one 16S ribosome RNA decoding A-site bound to paromomycin was simulated for 4 ns. The methodology predicts that the 11-mer:10-mer duplex binds to paromomycin with high affinity, whereas smaller RNA duplexes lose complex stability and the ability to bind paromomycin. The predicted high-affinity binding to paromomycin of the 11-mer:10-mer duplex was confirmed experimentally (EC50 = 0.28 ,M), as well as the inability of smaller complexes to bind. Our simulations show good agreement with experiment for dynamic and structural properties of the isolated A-site, including hydrogen-bonding networks and RNA structural rearrangements upon ligand binding. The results suggest that MD simulations can supplement in vitro methods as a tool for predicting minimum RNA-binding motifs for both small, rigid ligands, and large, flexible ligands when structural information is available. © 2007 Wiley Periodicals, Inc. Biopolymers 86: 95,111, 2007. This article was originally published online as an accepted preprint. The "Published Online" date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com [source]