Rheological Model (rheological + model)

Distribution by Scientific Domains


Selected Abstracts


Viscoelastic,afterslip concurrence: a possible mechanism in the early post-seismic deformation of the Mw 7.6, 1999 Chi-Chi (Taiwan) earthquake

GEOPHYSICAL JOURNAL INTERNATIONAL, Issue 3 2004
Shyh-Yang Sheu
SUMMARY Observed coseismic data as well as 97 days of post-seismic GPS data for the Chi-Chi earthquake are used as constraints in the modelling of crustal evolution using the 3-D finite-element method. First, the coseismic GPS data are used to justify the use of the elastic earth model and the source rupture model. Subsequently, the most likely rheological model is determined by analysing several modelled time-dependent displacements for various viscosity structures. The range of viscosities of the lower crust in central Taiwan is determined in advance from laboratory measurements and the long-term strain rate. The estimated viscosity of 5.0 × 1017 Pa s seems to be very low and a relaxation time of 116 days seems very short, but the latter approximates the GPS measurement of 86 days. Since earlier studies have indicated that both the viscoelastic response model and the afterslip model may affect post-seismic deformation, we compare theoretical surface displacements for each of the two models that we evaluate. The results reveal that there is little doubt that while neither of these models alone is able to predict the GPS measurements well in a 97-day period, the combination of the two models improves the predictions considerably. We conclude that the afterslip mainly dominated Chi-Chi post-seismic deformation in the rupture area while the viscoelastic model did so elsewhere. [source]


Rheological study of ternary mixtures and pectic gels of red fruit pulps

INTERNATIONAL JOURNAL OF FOOD SCIENCE & TECHNOLOGY, Issue 6 2007
Charles Windson Isidoro Haminiuk
Summary In this work, the rheological behaviour of ternary mixtures of strawberry, blackberry and raspberry pulps in steady shear was studied using the response surface methodology. In addition, the rheology of pectic gels extracted from these pulps was investigated by means of oscillatory shear tests. The flow curves were adequately described by the rheological model of Herschel,Bulkley. All the formulations analysed exhibited shear-thinning behaviour. The rheological responses were influenced by the difference in pulp proportions and also by the temperatures (20 and 60 °C). The quadratic and cubic models used to fit the response were considered suitable owing to the higher values of determination coefficient (R2). The pectic gels from strawberry, blackberry and raspberry showed a strong gel character, with strawberry presenting the stronger gel, which was confirmed by the Cox,Merz experiment, degree of esterification and average molecular weight data. [source]


Flow Characterization of Peach Products During Extrusion

JOURNAL OF FOOD SCIENCE, Issue 3 2000
H. Akdogan
ABSTRACT: Suitability of Bingham, Herschel-Bulkley, Casson, and Mizrahi-Berk models, to characterize the flow behavior of peach products during extrusion was investigated. The Casson equation sufficiently described the flow of peach extrudates within the 49 to 125 s -1 shear rate range. As concentration increased, yield stress and consistency coefficients increased. A rheological model was proposed to describe the viscosity of peach extrudates. The model incorporates the effect of shear rate by the Casson equation and the effect of concentration by a linear expression. The model provided good fit to the experimental data for peach extrudates reconstituted from drum-dried peach purees. [source]


Mixing of shear-thinning fluids with yield stress in stirred tanks

AICHE JOURNAL, Issue 7 2006
P. E. Arratia
Abstract Mixing of shear-thinning fluids with yield stress is investigated in a three-dimensional (3-D) flow both in experiments and in simulations. Experiments are conducted in a stirred tank using tracer visualization and velocity measurements. Bulk flow visualization shows the familiar cavern formation around the impeller with stagnant zones surrounding it. Detailed flow visualization inside caverns reveals the main ingredients of chaotic flow: lobe formation, stretching, folding, and self-similar mixing patterns. For multiple impeller systems, however, we find strong compartmentalization characterized by robust segregation between adjacent caverns, hindering mixing performance. Mixing efficiency is enhanced by moving the shaft off-center, which breaks spatial symmetry. The displacement of the shaft from the tank centerline has a beneficial effect on manifold structure: segregated regions are destroyed, separatrices are eliminated, and axial circulation is improved. Numerical simulations are performed by solving the incompressible Reynolds Averaged Navier Stokes equation with a Galerkin Least-Squares finite-element formulation and a macroscopic rheological model. Simulations are able to capture the main features of the flow and are used to investigate stretching statistics and scale behavior. © 2006 American Institute of Chemical Engineers AIChE J, 2006 [source]


NUMERICAL MODELING AND SIMULATION ON THE SWALLOWING OF JELLY

JOURNAL OF TEXTURE STUDIES, Issue 4 2009
H. MIZUNUMA
ABSTRACT Studies of the swallowing process are especially important for the development of care foods for dysphagia. However, the effectiveness of experiments on human subjects is somewhat limited due to instrument resolution, stress to the subjects and the risk of aspiration. These problems may be resolved if numerical simulation of swallowing can be used as an alternative investigative tool. On this basis, a numerical model is proposed to simulate the swallowing of a simple jelly bolus. The structure of the pharynx was modeled using a finite element method, and the swallowing movements were defined by pharynx posterior wall shift, laryngeal elevation and epiglottis retroflexion. The rheological characteristics of the jelly were investigated using an oscillatory rheometer and a compression test. A Maxwell three-element model was applied to the rheological model of the jelly. The model constants were obtained from compression tests because the mode of deformation and the stress level of the compression tests were similar to those of the swallowed jelly. The frictional relationship between the organs and the jelly was estimated experimentally from some frictional measurements between the jelly and a wet sloping surface. The results of the simulations for the soft and hard jellies showed different patterns of swallowing that depended on their hardness, and the soft jelly produced faster swallowing because of its flexibility. PRACTICAL APPLICATIONS The object of this study is to develop a numerical simulation model of swallowing. Numerical modeling is suitable for the quantitative analysis of the swallowing process and may also be expected to enable a systematic study of care foods that are safe and offer some degree of comfort to patients suffering from swallowing disorders. The computer simulation can be used for evaluation without dangerous risks to the patient. [source]


Application of Modified Natural Oils as Reactive Diluents for Epoxy Resins

MACROMOLECULAR SYMPOSIA, Issue 1 2006
Piotr Czub
Abstract Bisphenol A based low-molecular-weight epoxy resin was modified with epoxidized soybean oil, which exhibit viscosity reducing ability comparable to commercial grade active diluents. The studied compositions showed a non-Newtonian rheological behavior, typical for Bingham liquids. The values of the flow index (n) and the consistency index (k) for the compositions tested in the temperature range 25,65,°C were calculated from the Ostwald-de Waele rheological model and were used to calculate the flow-activation energy (Ea) using the Arhenius equation. Studies of co-crosslinking of mixed oil-resin compositions using isophorone diamine showed essential decrease of the reaction heat and peak maximum temperature. Mechanical properties, thermal stability, water absorption and chemical resistance of the epoxy resin modified with natural oil, were also investigated. Compositions of epoxy resin Ruetapox 0162, modified with the oil diluent, preserved very good mechanical properties of the epoxy resins and demonstrated relatively low water absorption as well as high chemical resistance. The compositions displayed even higher impact strength than pure epoxy resin due to plasticizing effect of the built-in oil. Compositions with the high contents (up to 60 weight %) of the oil were flexible materials with fast elastic recovery. [source]


Effect of Reaction Conditions and Catalyst Design on the Rheological Properties of Polyolefins Produced in Gas-Phase Olefin Polymerization Reactors

MACROMOLECULAR THEORY AND SIMULATIONS, Issue 9 2008
P. Pladis
Abstract A model is developed to predict the viscoelastic behavior of polyolefins produced in catalytic polymerization reactors. The approach is based on the solution of different sub-models (e.g., a kinetic model, a single particle model, a macroscopic reactor model and a rheological model). From the calculated rheological curve, the polymer melt index is determined. The ability of the proposed model to predict the viscoelastic behavior of linear polymer melts quantitatively is examined for the operation of a catalytic olefin polymerization cascade-loop reactor process. In addition, the transient rheological properties of polyolefins produced in a Ziegler-Natta gas-phase olefin polymerization fluidized-bed reactor are calculated. [source]


Numerical Investigations on the Plastic Memory Effect of PTFE Compounds

PROCEEDINGS IN APPLIED MATHEMATICS & MECHANICS, Issue 1 2003
Thomas Kletschkowski Dipl.-Ing.
To describe the nonlinear material behaviour of thermoplastic materials via the example of Polytetrafluorethylene (PTFE), a viscoplastic material model of overstress type is proposed. The approach is motivated by a rheological model, consisting of a rate-independent elastoplastic element with an endochronic flow rule and a nonlinear elastic element in parallel connection with a nonlinear Maxwell model. For the generalization to three dimensions, the theory of finite viscoplasticity based on material isomorphisms is applied. To describe the non-isothermal plastic memory effect, thermally induced plastic strains and a scalar back stress (inside the equilibrium branch) are taken into account. [source]


3D rheological model of transversal isotropic elastoplastic body

PROCEEDINGS IN APPLIED MATHEMATICS & MECHANICS, Issue 1 2003
Victor Naumov Dr.-Ing.
A 3D theory of microplasticity for an anisotropic elastoplastic body is presented. This theory is proposed for the phenomenological description and analysis of deformation of a superconducting cable under the transversal cyclic loading. Obtained constitutive equations reflect the possibility to describe hysteresis loops during cyclic loading of the material. They reflect the fact that these hysteresis loops don't depend on the strain rate. Developed theory deals with phenomenological anisotropy of elastoplasticity which is a characteristic property of the superconducting cable. This cable consists of a large number of strands oriented in general along the cable axis. [source]