rDNA Sequencing (rdna + sequencing)

Distribution by Scientific Domains


Selected Abstracts


Bacteria associated with the rapid tissue necrosis of stony corals

ENVIRONMENTAL MICROBIOLOGY, Issue 7 2007
G. M. Luna
Summary The rapid tissue necrosis (RTN) is a common disease of both wild and captive stony corals, which causes a fast tissue degradation (peeling) and death of the colony. Here we report the results of an investigation carried out on the stony coral Pocillopora damicornis, affected by an RTN-like disease. Total abundance of prokaryotes in tissue samples, determined by epifluorescence microscopy, was significantly higher in diseased than in healthy corals, as well as bacterial counts on MB2216 agar plates. Further experiments performed by fluorescent in situ hybridization using a 16S rDNA Vibrio -specific probe showed that vibrios were significantly more abundant in diseased than in healthy corals. Accordingly, bacterial counts on TCBS agar plates were higher in diseased than in healthy tissues. 16S rDNA sequencing identified as Vibrio colonies from diseased tissues only. Cultivated vibrios were dominated by a single ribotype, which displayed 99% of similarity with Vibrio harveyi strain LB4. Bacterial ribotype richness, assessed by terminal-restriction fragment length polymorphism analysis of the 16S rDNA, was significantly higher in diseased than in healthy corals. Using an in silico software, we estimated that a single terminal restriction fragment, putatively assigned to a Vibrio sp., accounted for >,15% and < 5% of the total bacterial assemblage, in diseased and healthy corals respectively. These results let us hypothesize that the RTN in stony corals can be an infectious disease associated to the presence of Vibrio harveyi. However, further studies are needed to validate the microbial origin of this pathology. [source]


A molecular biological protocol to distinguish potentially human pathogenic Stenotrophomonas maltophilia from plant-associated Stenotrophomonas rhizophila

ENVIRONMENTAL MICROBIOLOGY, Issue 11 2005
Kathrin Ribbeck-Busch
Summary In recent years, the importance of the Gram-negative bacterium Stenotrophomonas as an opportunistic pathogen as well as in biotechnology has increased. The aim of the present study was to develop new methods for distinguishing between strains closely related to the potentially human pathogenic Stenotrophomonas maltophilia and those closely related to the plant-associated Stenotrophomonas rhizophila. To accomplish this, 58 strains were characterized by 16S rDNA sequencing and amplified ribosomal DNA restriction analysis (ARDRA), and the occurrence of specific functional genes. Based on 16S rDNA sequences, an ARDRA protocol was developed which allowed differentiation between strains of the S. maltophilia and the S. rhizophila group. As it was known that only salt-treated cells of S. rhizophila were able to synthesize the compatible solute glucosylglycerol (GG), the ggpS gene responsible for GG synthesis was used for differentiation between both species and it was confirmed that it only occurred in S. rhizophila strains. As a further genetic marker the smeD gene, which is part of the genes coding for the multidrug efflux pump SmeDEF from S. maltophilia, was used. Based on the results we propose a combination of fingerprinting techniques using the 16S rDNA and the functional genes ggpS and smeD to distinguish both Stenotrophomonas species. [source]


Multiple species of the dinophagous dinoflagellate genus Amoebophrya infect the same host species

ENVIRONMENTAL MICROBIOLOGY, Issue 11 2003
Paulo S. Salomon
Summary Populations of the dinoflagellate Dinophysis norvegica in the Baltic Sea and in the adjacent North Sea are infected by the endoparasite Amoebophrya sp. The high diversity recently unveiled within the genus Amoebophrya brings uncertainty about their identities. We applied molecular biology techniques , 18S rDNA sequencing and fluorescent in situ hybridization (FISH) , to compare this host,parasite system from both environments. The North Sea Amoebophrya sp. 18S rDNA sequence was 89% identical to the previously described Baltic Sea Amoebophrya sp. sequence, suggesting they are different species. In spite of that, a phylogenetical analysis placed the North Sea parasite sequence in a well-supported cluster with other Amoebophrya sp. sequences. The D. norvegica 18S rDNA sequences from both environments were 100% identical, indicating that the hosts have not evolved independently. A DNA probe designed for the Baltic Sea Amoebophrya sp. 18S rRNA was used in FISH assays on infected D. norvegica populations from both environments. The probe stained all infected cells from the Baltic sample, whereas none from the North Sea were stained. The results indicate that D. norvegica is released from one parasite when entering the Baltic Sea, and become less infected by an alternative parasite species. [source]


Specificity in the settlement , modifying response of bacterial biofilms towards zoospores of the marine alga Enteromorpha

ENVIRONMENTAL MICROBIOLOGY, Issue 5 2003
Pratixa Patel
Summary Previous studies have shown that the rate of settlement of zoospores of the green alga Enteromorpha is stimulated by mixed microbial biofilms and that the number of zoospores settling is positively correlated with the number of bacteria in the biofilm. In the present study the specificity of this relationship has been investigated. Ninety-nine strains of marine bacteria were isolated from natural biofilms on rocks and the surface of Enteromorpha plants. Isolates were screened by denaturing gradient gel electrophoresis (DGGE) to eliminate replicates and 16S rDNA sequencing identified a total of 37 unique strains. Phylogenetic analysis revealed that the isolated bacterial strains belonged to three groups ,- Proteobacteria (28 strains), Cytophaga-Flavobacteria-Bacteroid (CFB) group (six strains) and ,- Proteobacteria (one strain). Two strains were unassigned, showing < 93% sequence similarity with the CFB group. The main genera of ,- Proteobacteria were Pseudoalteromonas (14 strains), Vibrio (five strains), Shewanella (five strains), Halomonas (three strains) and Pseudomonas (one strain). Spore settlement experiments were conducted on single-species biofilms, developed for different times on glass slides. The effect of correcting spore settlement values for biofilm density was evaluated. Results showed that the effect of bacterial strains on spore settlement was strain- but not taxon-specific and activity varied with the age of the biofilm. However, most of the strains belonging to genera Vibrio and Shewanella showed stimulation. Pseudoalteromonas strains showed a range of effects including settlement-inhibiting, paralysing and lysing activities. Spatial analysis of bacterial density in the presence and absence of spores revealed a range of different types of association between spores and bacteria. Overall, the spatial association between spores and bacteria appears to be independent of the overall quantitative influence of bacterial cells on spore settlement. [source]


Characterization of nickel-resistant bacteria isolated from serpentine soil

ENVIRONMENTAL MICROBIOLOGY, Issue 11 2001
A. Mengoni
In the present study, heterotrophic nickel-resistant bacteria were isolated and characterized from three different serpentine outcrops in central Italy populated by the nickel-hyperaccumulating plant Alyssum bertolonii. Bacteria were isolated from the rhizosphere of the plant and from soil portions at various distances from the plant. The proportion of nickel-resistant cfu was higher in proximity to the plant than in free soil. A total of 138 isolates was collected and grouped into 47 different operational taxonomic units (OTUs) by means of amplified ribosomal DNA restriction analysis (ARDRA) and into 25 heavy-metal resistant phenotypes. The phylogenetic position of strains belonging to 20 OTUs, representing more than the 70% of the total isolates, was determined by 16S rDNA sequencing. These analyses showed that the most represented genera in all three different outcrops were Pseudomonas and Streptomyces. Pseudomonas strains were found to be predominant in the plant rhizosphere, whereas Streptomyces strains were mainly present in the soil. [source]


The structure of a local population of phytopathogenic Pseudomonas brassicacearum from agricultural soil indicates development under purifying selection pressure

ENVIRONMENTAL MICROBIOLOGY, Issue 3 2001
Johannes Sikorski
Among the isolates of a bacterial community from a soil sample taken from an agricultural plot in northern Germany, a population consisting of 119 strains was obtained that was identified by 16S rDNA sequencing and genomic fingerprinting as belonging to the recently described species Pseudomonas brassicacearum. Analysis of the population structure by allozyme electrophoresis (11 loci) and random amplified polymorphic DNA,polymerase chain reaction (RAPD,PCR; four primers) showed higher resolution with the latter method. Both methods indicated the presence of three lineages, one of which dominated strongly. Stochastic tests derived from the neutral theory of evolution (including Slatkin's exact test, Watterson's homozygosity test and the Tajima test) indicated that the population had developed under strong purifying selection pressure. The presence of strains clearly divergent from the majority of the population can be explained by in situ evolution or by influx of strains as a result of migration or both. Phytopathogenicity of a P. brassicacearum strain determined with tomato plants reached the level obtained with the type strain of the known pathogen Pseudomonas corrugata. The results show that a selective sweep was identified in a local population. Previously, a local selective sweep had not been seen in several populations of different bacterial species from a variety of environmental habitats. [source]


Identification of Trichoderma strains by image analysis of HPLC chromatograms

FEMS MICROBIOLOGY LETTERS, Issue 2 2001
Ulf Thrane
Abstract Forty-four Trichoderma strains from water-damaged building materials or indoor dust were classified with chromatographic image analysis on full chromatographic matrices obtained by high performance liquid chromatography with UV detection of culture extracts. The classes were compared with morphological identification and rDNA sequence data, and for each class all strains were of the same identity. With all three techniques each strain , except one , was identified as the same species. These strains belonged to Trichoderma atroviride (nine strains), Trichoderma viride (three strains), Trichoderma harzianum (10 strains), Trichoderma citrinoviride (12 strains), and Trichoderma longibrachiatum (nine strains). The odd strain was identified as Trichoderma hamatum by morphology and rDNA sequencing, but not by image analysis as no reference strains of this species were included. It is concluded that the secondary metabolite profile contains sufficient information for classification and species identification. [source]


Microbial communities in roots of Pinus sylvestris seedlings with damping-off symptoms in two forest nurseries as determined by ITS1/2 rDNA sequencing

FOREST PATHOLOGY, Issue 4 2009
H. Kwa
Summary A methodological molecular procedure, which included extraction and cloning of the ITS1/2 rDNA of root-associated organisms with subsequent transformation and sequencing of representative clones, was effective for detection, discrimination and determination of the frequency of the main damping-off pathogens in roots of Pinus sylvestris seedlings growing in different forest-tree nursery soils and exhibiting different rates of disease progress. Roots exhibiting slower damping-off progression were colonized by Fusarium oxysporum, Neonectria radicicola (Ascomycota) and Pythium spp. (Oomycota), which comprised 50% of the microbial community. Roots exhibiting faster damping-off progression were dominated by Thanatephorus cucumeris (Basidiomycota), which comprised 80% of the microbial community. The microbial community was more diverse in roots with slower damping-off progression (14 species) than in roots with faster disease progression (seven species). [source]


Geomicrobiology of deep-sea deposits: estimating community diversity from low-temperature seafloor rocks and minerals

GEOBIOLOGY, Issue 2 2003
Daniel R. Rogers
ABSTRACT The role of deep-sea microbial communities in the weathering of hydrothermal vent deposits is assessed using mineralogical and molecular biological techniques. The phylogenetic diversity of varied deep-sea bare rock habitats associated with the oceanic spreading centre at the Juan de Fuca Ridge was accessed using restriction fragment length polymorphism (RFLP) and rDNA sequencing. The mineralogical composition of the deposits used for phylogenetic analysis was determined by X-ray diffraction in order to determine the proportion and composition of sulphide minerals, and to determine degree of alteration associated with each sample. RFLP analyses resulted in 15 unique patterns, or Operational Taxonomic Units (OTUs). Most environments examined were dominated by only one or two OTUs, which often comprised approximately 60% of the rDNA clones generated from that environment. Only one environment, the Mound, had a representative rDNA clone from every OTU identified in this study. For one other environment, ODP sediments, rDNA clones were all contained in a single OTU. The diversity of the microbial community is found to decrease with decreasing reactivity of the sulphide component in the samples and with increasing presence of alteration products. Phylogenetic analyses reveal that OTUs contain representatives of the epsilon-, beta- and gamma-subdivisions of the Proteobacteria. OTU1, which dominates clone libraries from every environment and is increasingly dominant with increasing rock alteration, is closely related to a group of chemolithoautotrophic iron-oxidizing bacteria that have been recently isolated from the deep sea. The apparent abundance and widespread distribution within the samples examined of the putative iron-oxidizing bacteria that may be represented by OTU1 suggests that this physiological group could play an important role in rock-weathering and carbon fixation at the seafloor. [source]


Preliminary characterization of lactic acid bacteria isolated from Zlatar cheese

JOURNAL OF APPLIED MICROBIOLOGY, Issue 6 2007
K. Veljovic
Abstract Aims:, Isolation, characterization and identification of lactic acid bacteria (LAB) from artisanal Zlatar cheese during the ripening process and selection of strains with good technological characteristics. Methods and Results:, Characterization of LAB was performed based on morphological, physiological and biochemical assays, as well as, by determining proteolytic activity and plasmid profile. rep-polymerase chain reaction (PCR) analysis and 16S rDNA sequencing were used for the identification of LAB. PCR analysis was performed with specific primers for detection of the gene encoding nisin production. Strains Lactobacillus paracasei subsp. paracasei, Lactobacillus plantarum, Lactobacillus brevis, Lactococcus lactis subsp. lactis, Enterococcus faecium and Enterococcus faecalis were the main groups present in the Zlatar cheese during ripening. Conclusions:, Temporal changes in the species were observed during the Zlatar cheese ripening. Mesophilic lactobacilli are predominant microflora in Zlatar cheese. Significance and Impact of the Study:, In this study we determined that Zlatar cheese up to 30 days old could be used as a source of strains for the preparation of potential starter cultures in the process of industrial cheese production. As the Serbian food market is adjusting to European Union regulations, the standardization of Zlatar cheese production by using starter culture(s) based on autochtonous well-characterized LAB will enable the industrial production of this popular cheese in the future. [source]


Enrichment and identification of bacteria capable of reducing chemical oxygen demand of anaerobically treated molasses spent wash

JOURNAL OF APPLIED MICROBIOLOGY, Issue 6 2004
M. Ghosh
Abstract Aims:, The aim of this study was to isolate and identify bacterial strains capable of using recalcitrant compounds of molasses spent wash as sole carbon source from the soils of abandoned sites of distillery effluent discharge and characterize their ability of reducing the chemical oxygen demand (COD) of the spent wash. Methods and Results:, The isolates were grouped into six haplotypes by amplified ribosomal DNA restriction analysis (ARDRA) and BOX-PCR. The phylogenetic position of the representatives of the six main haplotypes strains was determined by 16S rDNA sequencing. They showed maximum similarity to six genera viz. Pseudomonas, Enterobacter, Stenotrophomonas, Aeromonas, Acinetobacter and Klebsiella. The extent of COD (44%) reduced collectively by the six strains was equal to that reduced individually by Aeromonas, Acinetobacter, Pseudomonas and Enterobacter. With spent wash as sole carbon source, the COD reducing strains grew faster at 37°C than 30°C. Conclusions:, Bacterial strains capable of degrading some of the recalcitrant compounds of anaerobically digested molasses spent wash can be isolated from the soils of abandoned sites of distillery effluent discharge. Biostimulation of these bacteria, which can degrade 44% of the carbon compounds of anaerobically digested molasses spent wash can be achieved by nitrogen fertilization and relatively higher temperature. Significance and Impact of the Study:, Supplementation of nitrogen source and controlling the temperature can be used in evolving strategies for in situ bioremediation of anaerobically digested spent wash from distilleries. [source]


Fungi are the predominant micro-organisms responsible for degradation of soil-buried polyester polyurethane over a range of soil water holding capacities

JOURNAL OF APPLIED MICROBIOLOGY, Issue 1 2003
S.R. Barratt
Abstract Aims: To investigate the relationship between soil water holding capacity (WHC) and biodegradation of polyester polyurethane (PU) and to quantify and identify the predominant degrading micro-organisms in the biofilms on plastic buried in soil. Methods and Results: High numbers of both fungi and bacteria were recovered from biofilms on soil-buried dumb-bell-shaped pieces of polyester PU after 44 days at 15,100% WHC. The tensile strength of the polyester PU was reduced by up to 60% over 20,80% soil WHC, but no reduction occurred at 15, 90 or 100% soil WHC. A PU agar clearance assay indicated that fungi, but not bacteria were, the major degrading organisms in the biofilms on polyester PU and 10,30% of all the isolated fungi were able to degrade polyester PU in this assay. A 5·8S rDNA sequencing identified 13 strains of fungi representing the three major colony morphology types responsible for PU degradation. Sequence homology matches identified these strains as Nectria gliocladioides (five strains), Penicillium ochrochloron (one strain) and Geomyces pannorum (seven strains). Geomyces pannorum was the predominant organism in the biofilms comprising 22,100% of the viable polyester PU degrading fungi. Conclusions: Polyester PU degradation was optimum under a wide range of soil WHC and the predominant degrading organisms were fungi. Significance and Impact of the Study: By identifying the predominant degrading fungi in soil and studying the optimum WHC conditions for degradation of PU it allows us to better understand how plastics are broken down in the environment such as in landfill sites. [source]


Characterization of yellow-pigmented and motile enterococci isolated from intestines of the garden snail Helix aspersa

JOURNAL OF APPLIED MICROBIOLOGY, Issue 5 2002

Aims: Enterococci associated with garden snails (Helix aspersa) were studied in order to obtain reliable species identification and characterization. Methods and Results: Twelve yellow-pigmented and motile enterococci, isolated from the intestines of garden snails, were phenotypically close to Enterococcus casseliflavus, but they showed certain unusual biochemical characteristics. tRNA intergenic length polymorphism analysis (tDNA-PCR) divided all strains studied into two groups, in full agreement with biochemical test results. 16S rDNA sequencing, DNA base composition analysis and DNA-DNA hybridization results showed unambiguously that the enterococci studied belonged to the species Ent. casseliflavus. The representative strains of described ecovars were deposited in the Czech Collection of Microorganisms (CCM) as Ent. casseliflavus CCM 4868, 4869, 4870 and 4871. Conclusions:Enterococcus casseliflavus associated with garden snails can be subdivided into groups. Significance and Impact of the Study:Enterococcus casseliflavus differs from other enterococcal species in that it is typically associated with plants, soil, water and invertebrate animals. The different groups that can be found in these widely occurring bacteria are possibly source-specific ecovars, as exemplified by the Ent. casseliflavus inhabiting the intestines of snails. [source]


Changes in the Lactobacillus community during Ricotta forte cheese natural fermentation

JOURNAL OF APPLIED MICROBIOLOGY, Issue 5 2000
F. Baruzzi
The loss of microbial biodiversity due to the increase in large-scale industrial processes led to the study of the natural microflora present in a typical little known dairy product. The community of lactobacilli was studied in order to understand the natural fermentation of Ricotta forte cheese. The combined use of RAPD analysis, 16S rDNA sequencing and physiological tests allowed 33 different strains belonging to 10 species of Lactobacillus to be characterized. RAPD analysis revealed the heterogeneity of both the Lact. kefiri and Lact. paracasei species. The sequence analysis of the large 16S/23S rRNA spacer region enabled Lact. plantarum to be distinguished from Lact. paraplantarum, two closely related species belonging to the Lact. plantarum group. The recovery of strains endowed with interesting physiological characteristics, such as strong stress resistance, could improve technological and/or organoleptic characteristics of Ricotta forte cheese and other fermented foods. [source]


Evaluation of a novel Bacillus strain from a north-western Spain hot spring as a source of extracellular thermostable lipase

JOURNAL OF CHEMICAL TECHNOLOGY & BIOTECHNOLOGY, Issue 10 2009
Francisco J. Deive
Abstract BACKGROUND: Thermophilic microorganisms are receiving significant attention as a source of useful thermostable enzymes. However, the number of known strains is still limited, and very often their most interesting biocatalysts are intracellular or membrane-bound and produced at low levels. Thus, the isolation and study of novel extracellular enzyme-producing thermophilic microorganisms is very interesting. Moreover, the assessment of bioreactor performance is crucial, given the scarce information on the large-scale culture of these strains. RESULTS: The production of a thermostable extracellular lipase in submerged cultures of a thermophilic microorganism, recently isolated in north-west Spain, was investigated. The strain was identified by 16S rDNA sequencing as belonging to genus Bacillus. The influence of operating variables (i.e. pH, temperature, aeration) on lipase biosynthesis was analysed. Enzyme production at bioreactor scale was investigated, special attention being paid to the effect of aeration and agitation rates. CONCLUSION: The best conditions for the studied process were determined in shake flasks as pH 7.0, 55 °C and high aeration levels. Also, the non-association between lipase production and cell growth was ascertained. The culture of this novel strain was successfully carried out in laboratory-scale bioreactors, thus proving its potential for further applications. Copyright © 2009 Society of Chemical Industry [source]


Affinities of the freshwater red alga Audouinella macrospora (Florideophyceae, Rhodophyta) and related forms based on ssu rrna gene sequence analysis and pit plug ultrastructure

JOURNAL OF PHYCOLOGY, Issue 2 2000
Curt M. Pueschel
Small subunit rDNA sequencing and transmission electron microscopy were performed to clarify the ordinal affinities of Audouinella macrospora (Wood) Sheath et Burkholder isolates 3394, 3395, and 3603, as well as Chantransia sp. isolate 3585. Culture 3603 is known to produce thalli of Batrachospermum -like morphology under certain culture conditions. Sequence analyses unequivocally placed the three Audouinella macrospora isolates in a clade with Batrachospermum macrosporum Montagne of the Batrachospermales, and Chantransia sp. was found to have affinities with B. louisianae Skuja and B. virgato-decaisneanum Sirodot. The pit plugs of the Audouinella macrospora cultures 3394 and 3395 were nearly identical in size and structure, having thickened plug caps and no cap membranes. Both of these features agree with those of the Batrachospermaceae, with the latter feature showing batrachospermacean rather than acrochaetioid affinities. Pit plugs in the chantransia phase of 3603 were similar, but the plug caps were less well developed. The Batrachospermum phase generated from 3603 had pit plugs that were variable in diameter, according to location in the thallus, thus reflecting the more variable cell size in this phase. Dome-like outer caps, considered typical of Batrachospermum, were present between cells of the determinate lateral filaments. The pit plugs of Chantransia sp. had prominent, dome-like outer caps, but the plug cores were strikingly and consistently smaller in diameter than those of the A. macrospora chantransia cultures, suggesting that plug diameter may be of systematic value in some contexts. [source]


Role of Alicyclobacillus acidoterrestris in the development of a disinfectant taint in shelf-stable fruit juice

LETTERS IN APPLIED MICROBIOLOGY, Issue 1 2003
N. Jensen
Abstract Aims: This study was undertaken to identify the bacterium and metabolic products contributing to a disinfectant taint in shelf-stable fruit juice and to determine some of the growth conditions for the organism. Methods and Results: Microbiological examination of tainted and untainted fruit juice drinks detected low numbers of acid-dependent, thermotolerant, spore-forming bacteria in the tainted juices only. The presence of ,-cyclohexyl fatty acids was confirmed in two of the isolates by cell membrane fatty acid analysis. The isolates were subsequently identified as Alicyclobacillus acidoterrestris by partial 16S rDNA sequencing. Studies on the isolates showed growth at pH 2·5,6·0 and 19·5,58 °C. Gas chromatography/mass spectrometry (GC/MS) was used to identify and quantify 2,6-dibromophenol (2,6-DBP) and 2,6-dichlorophenol (2,6-DCP) in the tainted juice. Challenge studies in a mixed fruit drink inoculated with the two isolates and the type strain of A. acidoterrestris, incubated at 44,46 °C for 4 d, showed the production of both metabolites, which were confirmed and quantified by GC/MS. Conclusions: The results show that A. acidoterrestris can produce 2,6-DBP and 2,6-DCP in shelf-stable juices. Significance and Impact of the Study: This is the first report detailing experimental methodology showing that A. acidoterrestris can produce 2,6-DCP in foods. Control of storage temperatures (to <,20 °C) immediately after processing may provide an effective control measure for the fruit juice industry to prevent spoilage by A. acidoterrestris. [source]


Pathogens as potential selective agents in the wild

MOLECULAR ECOLOGY, Issue 22 2009
MÉLANIE DIONNE
Pathogens are considered a serious threat to which wild populations must adapt, most particularly under conditions of rapid environmental change. One way host adaptation has been studied is through genetic population structure at the major histocompatibility complex (MHC), a complex of adaptive genes involved in pathogen resistance in vertebrates. However, while associations between specific pathogens and MHC alleles or diversity have been documented from laboratory studies, the interaction between hosts and pathogens in the wild is more complex. As such, identifying selective agents and understanding underlying co-evolutionary mechanisms remains a major challenge. In this issue of Molecular Ecology, Evans & Neff (2009) characterized spatial and temporal variation in the bacterial parasite community infecting Chinook salmon (Oncorhynchus tshawytscha) fry from five populations in British Columbia, Canada. They used a 16S rDNA sequencing-based approach to examine the prevalence of bacterial infection in kidney and looked for associations with MHC class I and II genetic variability. The authors found a high diversity of bacteria infecting fry, albeit at low prevalence. It was reasoned that spatial variability in infection rate and bacterial community phylogenetic similarity found across populations may represent differential pathogen-mediated selection pressures. The study revealed some evidence of heterozygote advantage at MHC class II, but not class I, and preliminary associations between specific MHC alleles and bacterial infections were uncovered. This research adds an interesting perspective to the debate on host,pathogen co-evolutionary mechanisms and emphasizes the importance of considering the complexity of pathogen communities in studies of host local adaptation. [source]


Evaluations of lactic acid bacteria as probiotics for juvenile seabass Lates calcarifer

AQUACULTURE RESEARCH, Issue 2 2008
Sirirat Rengpipat
Abstract Lactic acid bacteria (LAB) were isolated from adult, wild-caught and farmed seabass (Lates calcarifer) intestines for evaluation as possible probiotics using the well agar diffusion method. Five LAB isolates (designated as LAB-1,5) were found to inhibit Aeromonas hydrophila, a known seabass pathogen. Median lethal concentrations (LC50) of A. hydrophila on juvenile seabass were measured in aquaria. Median lethal concentration values of 7.76, 7.47 and 7.26 log10 CFU mL,1 for 72, 96 and 120 h, respectively, were found. Juvenile seabass (0.6±0.2 g) were cultured in aquaria and fed individual LAB-1,5 fortified feeds with 7 log10 CFU g,1 LAB. Seabass fed LAB-4 fortified feed had significantly greater growth (P<0.05) than fish fed other feeds. Seabass fed LAB-4 also had greater survival, but this was non-significant (P<0.05). Challenge tests of LAB-4 fed seabass with A. hydrophila at ,7 log10CFU mL,1 yielded significantly greater survival compared with control seabass (P<0.05). Aeromonas hydrophila infections in seabass were confirmed by observing disease manifestation and by immunohistochemistry techniques. LAB-4 was preliminarily identified using lactic acid analysis, biochemical and physical characteristics. It was further identified using 16S rDNA sequencing. LAB-4 was identified as Weissella confusa (identity of 99%). GenBank accession number for the 16S rDNA sequence for LAB-4 was AB023241. [source]