R Proteins (r + protein)

Distribution by Scientific Domains


Selected Abstracts


Recent insights into R gene evolution

MOLECULAR PLANT PATHOLOGY, Issue 5 2006
JOHN M. MCDOWELL
SUMMARY Plants are under strong evolutionary pressure to maintain surveillance against pathogens. Resistance (R) gene-dependent recognition of pathogen avirulence (Avr) determinants plays a major role in plant defence. Here we highlight recent insights into the molecular mechanisms and selective forces that drive the evolution of NB-LRR (nucleotide binding-leucine-rich repeat) resistance genes. New implications for models of R gene evolution have been raised by demonstrations that R proteins can detect cognate Avr proteins indirectly by ,guarding' virulence targets, and by evidence that R protein signalling is regulated by intramolecular interactions between different R functional domains. Comparative genomic surveys of NB-LRR diversity in different species have revealed ancient NB-LRR lineages that are unequally represented among plant taxa, consistent with a Birth and Death Model of evolution. The physical distribution of NB-LRRs in plant genomes indicates that tandem and segmental duplication are important factors in R gene proliferation. The majority of R genes reside in clusters, and the frequency of recombination between clustered genes can vary strikingly, even within a single cluster. Biotic and abiotic factors have been shown to increase the frequency of recombination in reporter transgene-based assays, suggesting that external stressors can affect genome stability. Fitness penalties have been associated with some R genes, and population studies have provided evidence for maintenance of ancient R allelic diversity by balancing selection. The available data suggest that different R genes can follow strikingly distinct evolutionary trajectories, indicating that it will be difficult to formulate universally applicable models of R gene evolution. [source]


Constitutive activation of a CC-NB-LRR protein alters morphogenesis through the cytokinin pathway in Arabidopsis

THE PLANT JOURNAL, Issue 1 2008
Kadunari Igari
Summary Possible links between plant defense responses and morphogenesis have been postulated, but their molecular nature remains unknown. Here, we introduce the Arabidopsis semi-dominant mutant uni-1D with morphological defects. UNI encodes a coiled-coil nucleotide-binding leucine-rich-repeat protein that belongs to the disease resistance (R) protein family involved in pathogen recognition. The uni-1D mutation causes the constitutive activation of the protein, which is stabilized by the RAR1 function in a similar way as in other R proteins. The uni-1D mutation induces the upregulation of the Pathogenesis-related gene via the accumulation of salicylic acid, and evokes some of the morphological defects through the accumulation of cytokinin. The rin4 knock-down mutation, which causes the constitutive activation of two R proteins, RPS2 and RPM1, induces an upregulation of cytokinin-responsive genes and morphological defects similar to the uni-1D mutation, indicating that the constitutive activation of some R proteins alters morphogenesis through the cytokinin pathway. From these data, we propose that the modification of the cytokinin pathway might be involved in some R protein-mediated responses. [source]


An NB-LRR protein required for HR signalling mediated by both extra- and intracellular resistance proteins

THE PLANT JOURNAL, Issue 1 2007
Suzan H.E.J. Gabriëls
Summary Tomato (Solanum lycopersicum) Cf resistance genes confer hypersensitive response (HR)-associated resistance to strains of the pathogenic fungus Cladosporium fulvum that express the matching avirulence (Avr) gene. Previously, we identified an Avr4 - responsive tomato (ART) gene that is required for Cf-4/Avr4 -induced HR in Nicotiana benthamiana as demonstrated by virus-induced gene silencing (VIGS). The gene encodes a CC-NB-LRR type resistance (R) protein analogue that we have designated NRC1 (NB-LRR protein required for HR-associated cell death 1). Here we describe that knock-down of NRC1 in tomato not only affects the Cf-4/Avr4 -induced HR but also compromises Cf-4- mediated resistance to C. fulvum. In addition, VIGS using NRC1 in N. benthamiana revealed that this protein is also required for the HR induced by the R proteins Cf-9, LeEix, Pto, Rx and Mi. Transient expression of NRC1D481V, which encodes a constitutively active NRC1 mutant protein, triggers an elicitor-independent HR. Subsequently, we transiently expressed this auto-activating protein in N. benthamiana silenced for genes known to be involved in HR signalling, thereby allowing NRC1 to be positioned in an HR signalling pathway. We found that NRC1 requires RAR1 and SGT1 to be functional, whereas it does not require NDR1 and EDS1. As the Cf-4 protein requires EDS1 for its function, we hypothesize that NRC1 functions downstream of EDS1. We also found that NRC1 acts upstream of a MAP kinase pathway. We conclude that Cf -mediated resistance signalling requires a downstream NB-LRR protein that also functions in cell death signalling pathways triggered by other R proteins. [source]