Home About us Contact | |||
Quinic Acid (quinic + acid)
Selected AbstractsA Direct, Biomass-Based Synthesis of Benzoic Acid: Formic Acid-Mediated Deoxygenation of the Glucose-Derived Materials Quinic Acid and Shikimic AcidCHEMSUSCHEM CHEMISTRY AND SUSTAINABILITY, ENERGY & MATERIALS, Issue 7 2010Elena Arceo Dr. Shikimic Gimmick: An alternative biomass-based route to benzoic acid from the renewable starting materials quinic acid and shikimic acid is described. Benzoic acid is obtained selectively using a highly efficient, one-step formic acid-mediated deoxygenation method. [source] Identification and quantification of galloyl derivatives, flavonoid glycosides and anthocyanins in leaves of Pistacia lentiscus L.PHYTOCHEMICAL ANALYSIS, Issue 2 2002A. Romani Abstract Separation, identification and quantification of polyphenols was carried out on leaves of Pistacia lentiscus L., an evergreen member of the family Anacardiaceae, using semi-preparative HPLC, HPLC-photodiode array detection and HPLC-MS analysis, together with 1H- and 13C NMR. Three major classes of secondary metabolites were detected: (i) gallic acid and galloyl derivatives of both glucose and quinic acid; (ii) flavonol glycosides, i.e. myricetin and quercetin glycosides; and (iii) anthocyanins, namely delphinidin 3- O -glucoside and cyanidin 3- O -glucoside. Low amounts of catechin were also detected. The concentration of galloyl derivatives was extremely high, representing 5.3% of the leaf dry weight, and appreciable amounts of myricetin derivatives were also detected (1.5% on a dry weight basis). These findings may be useful in establishing a relationship between the chemical composition of the leaf extract and the previously reported biological activity of P. lentiscus, and may also assign a new potential role of P. lentiscus tissue extracts in human health care. Copyright © 2002 John Wiley & Sons, Ltd. [source] A Direct, Biomass-Based Synthesis of Benzoic Acid: Formic Acid-Mediated Deoxygenation of the Glucose-Derived Materials Quinic Acid and Shikimic AcidCHEMSUSCHEM CHEMISTRY AND SUSTAINABILITY, ENERGY & MATERIALS, Issue 7 2010Elena Arceo Dr. Shikimic Gimmick: An alternative biomass-based route to benzoic acid from the renewable starting materials quinic acid and shikimic acid is described. Benzoic acid is obtained selectively using a highly efficient, one-step formic acid-mediated deoxygenation method. [source] Hierarchical scheme for liquid chromatography/multi-stage spectrometric identification of 3,4,5-triacyl chlorogenic acids in green Robusta coffee beansRAPID COMMUNICATIONS IN MASS SPECTROMETRY, Issue 15 2010Rakesh Jaiswal Liquid chromatography/multi-stage spectrometry (LC/MSn) (n,=,2,4) has been used to detect and characterize in green Robusta coffee beans eight quantitatively minor triacyl chlorogenic acids with seven of them not previously reported in nature. These comprise 3,4,5-tricaffeoylquinic acid (Mr 678); 3,5-dicaffeoyl-4-feruloylquinic acid, 3-feruloyl-4,5-dicaffeoylquinic acid and 3,4-dicaffeoyl-5-feruloylquinic acid (Mr 692); 3-caffeoyl-4,5-diferuloylquinic acid and 3,4-diferuloyl-5 - caffeoylquinic acid (Mr 706); and 3,4-dicaffeoyl-5-sinapoylquinic acid and 3-sinapoyl-4,5-dicaffeoylquinic acid (Mr 722). Structures have been assigned on the basis of LC/MSn patterns of fragmentation. A new hierarchical key for the identification of triacyl quinic acids is presented, based on previously established rules of fragmentation. Fifty-two chlorogenic acids have now been characterized in green Robusta coffee beans. In this study five samples of green Robusta coffee beans and fifteen samples of Arabica coffee beans were analyzed with triacyl chlorogenic acids only found in Robusta coffee bean extracts. These triacyl chlorogenic acids could be considered as useful phytochemical markers for the identification of Robusta coffee beans. Copyright © 2010 John Wiley & Sons, Ltd. [source] |