Quiescent Period (quiescent + period)

Distribution by Scientific Domains


Selected Abstracts


Infancy is not a quiescent period of testicular development

INTERNATIONAL JOURNAL OF ANDROLOGY, Issue 1 2001
Héctor E. Chemes
Postnatal evolution of the testis in most laboratory animals is characterized by the close continuity between neonatal activation and pubertal development. In higher primates, infancy, a long period of variable duration, separates birth from the beginning of puberty. This period has been classically considered as a quiescent phase of testicular development, but is actually characterized by intense, yet inapparent activity. Testicular volume increases vigorously shortly after birth and in early infancy due to the growth in length of seminiferous cords. This longitudinal growth results from active proliferation of infantile Sertoli cells which otherwise display a unique array of functional capabilities (oestrogen and anti-müllerian hormone secretion, increase of FSH receptors and maximal response to FSH). Leydig cells also show recrudescence after birth, possibly determined by an active gonadotrophic-testicular axis which results in increased testosterone secretion of uncertain functional role. This postnatal activation slowly subsides during late infancy when periodic phases of activation of the hypothalamo-pituitary-testicular axis are paralleled by incomplete spermatogenic spurts. The beginning of puberty is marked by the simultaneous reawakening of Leydig cell function and succeeding phases of germ cell differentiation/degeneration which ultimately lead to final spermatogenic maturation. The marked testicular growth in this stage is due to progressive increase at seminiferous tubule diameter. Sertoli cells, which have reached mitotic arrest, develop and differentiate, establishing the seminiferous tubule barrier, fluid secretion and lumen formation, and acquiring cyclic morphological and metabolic variations characteristic of the mature stage. All of these modifications indicate that, far from being quiescent, the testis in primates experiences numerous changes during infancy, and that the potential for pubertal development and normal adult fertility depends on the successful completion of these changes. [source]


Expression of MHC Class II, CD70, CD80, CD86 and pro-inflammatory cytokines is differentially regulated in oral epithelial cells following bacterial challenge

MOLECULAR ORAL MICROBIOLOGY, Issue 6 2003
D. C. Han
Oral epithelium may play a regulatory role in local immune responses when interacting with bacteria. The present study was undertaken to investigate the effects of selected bacterial pathogens found in periodontal and endodontic infections on oral epithelial cells. Expression of cell surface molecules (major histocompatibility complex (MHC) Class II, CD54, CD70, CD80 and CD86) and secretion of inflammatory cytokines (interleukin (IL)-1,, IL-6, and tumor necrosis factor (TNF)-,) in response to selected bacterial challenge were examined on an immortalized oral epithelial cell line, HOK-18A and a skin epithelial cell line, HaCaT. Actinomyces viscosus, Actinomyces israelii, Fusobacterium nucleatum lipopolysaccharide (LPS) or primary human periradicular exudate from a granuloma were co-cultured with epithelial cells for 4 or 24 h. Subsequently, cell surface expression of MHC Class II, CD54, CD70, CD80 and CD86, along with pro-inflammatory cytokine levels were determined using flow cytometry, ELISA and RT-PCR. Results indicated that the selected oral bacteria have greater effects on oral versus skin epithelial cells. F. nucleatum increased MHC Class II and CD54 (ICAM-1) cell surface expression on HOK-18A and HaCaT cells. A. israelii also had enhancing effects on the expression of CD54 and MHC Class II. A. israelii and LPS induced a 2.8-fold (P < 0.001) and 4.4-fold (P < 0.005) TNF-, secretion, respectively, while F. nucleatum and LPS induced a 10-fold (P < 0.0004) and 6-fold (P < 0.01) IL-1, secretion, respectively by HOK-18A. Interestingly, CD70, CD80, and CD86 were generally decreased upon bacteria and LPS challenge on HOK-18A. The effects of increased MHC Class II and decreased CD70 were also evident with challenge of human periradicular exudate on HOK-18A. The implications of the study are unique in that oral epithelial cells may play both activating and inhibitory roles in the host immune response towards infection by oral bacteria. We introduce a concept of ,dormancy' where the differential expression of key cell surface antigens on oral epithelial cells may keep the recruited immune effector cells in a state of unresponsiveness, thus contributing to the long term quiescent period observed in many periodontal and endodontic lesions. [source]


Histomorphometric assessment of bone turnover in uraemic patients: comparison between activation frequency and bone formation rate

HISTOPATHOLOGY, Issue 6 2001
P Ballanti
Histomorphometric assessment of bone turnover in uraemic patients: comparison between activation frequency and bone formation rate Aims:,The histomorphometric assessment of bone formation rate (BFR/BS) in bone biopsies from uraemic patients is of crucial importance in differentiating low from high turnover types of renal osteodystrophy. However, since BFR/BS relies on osteoblasts, activation frequency (Ac.f), encompassing all remodelling phases, has recently been preferred to BFR/BS. This study was carried out to consider whether estimation of Ac.f is superior, in practical terms, to that of BFR/BS in distinguishing between different rates of bone turnover in uraemic patients. Methods and results:,Bone biopsies from 27 patients in predialysis (20 men and seven women; mean age 53 ± 12 years) and 37 in haemodialysis (22 men and 15 women; mean age 53 ± 12 years) were examined. The types of renal osteodystrophy were classified on the basis of morphology. Bone formation rate and Ac.f were evaluated according to standardized procedures. The Ac.f was calculated both as a ratio between BFR/BS and wall thickness (W.Th) and as a reciprocal of erosion, formation and quiescent periods (EP, FP and QP). Patients were affected by renal osteodystrophy with predominant hyperparathyroidism (two predialysis and 16 dialysis), predominant osteomalacia (three predialysis and seven dialysis) or that of advanced (nine predialysis and five dialysis) or mild (seven predialysis and four dialysis) mixed type or adynamic type (six predialysis and five dialysis). Activation frequency, which with either formula requires the measurement of W.Th, i.e. the thickness of bone structural units (BSUs), was not calculated in three dialysis patients with severe hyperparathyroidism and in one predialysis and four dialysis patients with severe osteomalacia, because only incomplete BSUs were found. In dialysis, EP was higher in the adynamic than in the other types of osteodystrophy. During both predialysis and dialysis, FP was higher in osteomalacia than in the other forms of osteodystrophy, and in adynamic osteopathy than in hyperparathyroidism or in advanced and mild mixed osteodystrophy. During predialysis and dialysis, QP was higher in the adynamic than in the other forms of osteodystrophy. Correlations were found between BFR/BS and Ac.f, during predialysis (r=0.97) and dialysis (r=0.95). Conclusions:,The superiority of Ac.f in assessing bone turnover, in comparison to BFR/BS, is conceptual rather than practical. The highest values for FP in osteomalacia and for QP in adynamic bone allow a clearer characterization of these low turnover conditions. [source]


Magnet Tracking: a new tool for in vivo studies of the rat gastrointestinal motility

NEUROGASTROENTEROLOGY & MOTILITY, Issue 6 2006
R. Guignet
Abstract, Digestive motility was studied in the rat using a miniaturized version of the Magnet Tracking system which monitored the progression of a small magnetic pill through the entire digestive tract. The dynamics of movement was followed and three-dimensional (3-D) images of digestive tract were generated. After a retention period in the stomach and rapid passage through duodenum, the magnet progressed along the small intestine with gradually decreasing speed and longer stationary periods. It remained in the caecum for variable intervals. In the colon, periods of progress alternated with long quiescent periods. Gastric activity oscillated at 5,6 min,1. In the small intestine, two frequency domains coexisted, showing independent modulations and proximo-distal gradients (40 to >32 and 28 to >20 min,1). Caecal oscillations were of 1.5 min,1. The data allowed the magnet location and calculation of gastric and small intestinal transit times (58 ± 36 and 83 ± 14 min respectively), both significantly prolonged by oleate administration (243 ± 130 and 170 ± 45 min respectively). Magnet Tracking is a non-invasive tool to study the in vivo spatial and temporal organization of gastrointestinal motility in the rat. [source]