Queen Mating Frequency (queen + mating_frequency)

Distribution by Scientific Domains


Selected Abstracts


Polyandry and colony genetic structure in the primitive ant Nothomyrmecia macrops

JOURNAL OF EVOLUTIONARY BIOLOGY, Issue 3 2001
M. Sanetra
The Australian endemic ant Nothomyrmecia macrops is considered one of the most ,primitive' among living ants. We investigated the genetic structure of colonies to determine queen mating frequencies and nestmate relatedness. An average of 18.8 individuals from each of 32 colonies, and sperm extracted from 34 foraging queens, were genotyped using five highly variable microsatellite markers. Queens were typically singly (65%) or doubly mated (30%), but triple mating (5%) also occurred. The mean effective number of male mates for queens was 1.37. No relationship between colony size and queen mate number was found. Nestmate workers were related by b=0.61 ± 0.03, significantly above the threshold under Hamilton's rule over which, all else being equal, altruistic behaviour persists, but queens and their mates were unrelated. In 25% of the colonies we detected a few workers that could not have been produced by the resident queen, although there was no evidence for worker reproduction. Polyandry is for the first time recorded in a species with very small mature colonies, which is inconsistent with the sperm-limitation hypothesis for the mediation of polyandry levels. Facultative polyandry is therefore not confined to the highly advanced ant genera, but may have arisen at an early stage in ant social evolution. [source]


Mating structure and male production in Vespa analis and Vespa simillima (Hymenoptera: Vespidae)

ENTOMOLOGICAL SCIENCE, Issue 3 2007
Jun-ichi TAKAHASHI
Abstract We estimated queen mating frequency, genetic relatedness between workers and worker reproduction in the hornets Vespa analis and Vespa simillima using microsatellite DNA genotyping. The 20 V. analis colonies studied each contained a queen inseminated by a single male. Of the 15 V. simillima colonies studied, nine had a queen inseminated by a single male, four had a queen inseminated by two males, and two had a queen inseminated by three males. The estimated effective number of matings was 1.33 ± 0.74 (mean ± SD), with 75,85% of the offspring of the six multiply mated queens sired by single males. The values for genetic relatedness between the workers of V. analis and V. simillima were 0.739 ± 0.004 and 0.698 ± 0.013 (mean ± SD), respectively. We conclude that V. analis and V. simillima colonies are genetically monogynous and monandrous. When high relatedness between the workers occurs within colonies, kin selection theory predicts a potential conflict between queens and workers over male production. To determine whether males were derived from queens or workers, males from V. analis and V. simillima colonies were genotyped at four microsatellite loci and the level of ovary activation in workers was determined. None of the 787 V. analis workers and only 15 of 3520 V. simillima workers had developed ovaries. Furthermore, the genotyping identified no worker-produced males in any colony. The presence of reproductive workers correlated positively with the number of workers within the colony. These results suggest that eusocial colonies with an annual life cycle tend to break down socially when they become large and are close to dying. [source]


Paternity frequency and maternity of males in some stingless bee species

MOLECULAR ECOLOGY, Issue 10 2002
Kellie A. Palmer
Abstract In monogynous hymenopteran societies, the number of mates of a queen strongly influences the potential for conflict between workers and queens over the maternity of males. Queens always ,prefer' their own sons to sons of workers, regardless of queen mating frequency. When a queen mates once, workers are more closely related to, and therefore are expected to prefer, their own sons and then sons of sisters to sons of the queen. However, if effective paternity frequency exceeds 2, workers on average should prefer queen-produced males to males produced by their sisters. We studied the queen mating frequency of seven stingless bee species: the Mexican species Scaptotrigona mexicana, S. pectoralis and the Australian species Austroplebeia symei, Trigona clypearis, T. hockingsi, T. mellipes and T. sapiens. We then determined whether males arise from eggs laid by workers or queens in A. symei, T. clypearis, T. hockingsi and T. mellipes. We show that all seven species investigated are most likely singly mated and that the queen dominates reproduction. This indicates that the queen's mating frequency alone does not determine whether workers or the queen produces the males. [source]