Home About us Contact | |||
Quantitative Proteomics (quantitative + proteomic)
Terms modified by Quantitative Proteomics Selected AbstractsA MS data search method for improved 15N-labeled protein identificationPROTEINS: STRUCTURE, FUNCTION AND BIOINFORMATICS, Issue 17 2009Yaoyang Zhang Abstract Quantitative proteomics using stable isotope labeling strategies combined with MS is an important tool for biomarker discovery. Methods involving stable isotope metabolic labeling result in optimal quantitative accuracy, since they allow the immediate combination of two or more samples. Unfortunately, stable isotope incorporation rates in metabolic labeling experiments using mammalian organisms usually do not reach 100%. As a consequence, protein identifications in 15N database searches have poor success rates. We report on a strategy that significantly improves the number of 15N-labeled protein identifications and results in a more comprehensive and accurate relative peptide quantification workflow. [source] Quantitative proteomics and phosphoproteomics reveal novel insights into complexity and dynamics of the EGFR signaling networkPROTEINS: STRUCTURE, FUNCTION AND BIOINFORMATICS, Issue 21 2008Sandra Morandell Abstract The epidermal growth factor receptor (EGFR/ErbB1/Her1) belongs to the ErbB family of receptor tyrosine kinases (RTKs) and is a key player in the regulation of cell proliferation, differentiation, survival, and migration. Overexpression and mutational changes of EGFR have been identified in a variety of human cancers and the regulation of EGFR signaling plays a critical role in tumor development and progression. Due to its biological significance the EGFR signaling network is a widely used model system for the development of analytical techniques. Novel quantitative proteomics and phosphoproteomics approaches play an important role in the characterization of signaling pathways in a time and stimulus dependent manner. Recent studies discussed in this review provide new insights into different aspects of EGFR signal transduction, such as regulation and dynamics of its phosphorylation sites, association with interaction partners and identification of regulated phosphoproteins. Correlation of data from functional proteomics studies with results from other fields of signal transduction research by systems biology will be necessary to integrate and translate these findings into successful clinical applications. [source] Quantitative proteomics of intracellular Porphyromonas gingivalisPROTEINS: STRUCTURE, FUNCTION AND BIOINFORMATICS, Issue 23 2007Qiangwei Xia Abstract Whole-cell quantitative proteomic analyses were conducted to investigate the change from an extracellular to intracellular lifestyle for Porphyromonas gingivalis, a Gram-negative intracellular pathogen associated with periodontal disease. Global protein abundance data for P. gingivalis strain ATCC 33277 internalized for 18,h within human gingival epithelial cells and controls exposed to gingival cell culture medium were obtained at sufficient coverage to provide strong evidence that these changes are profound. A total of 385 proteins were overexpressed in internalized P. gingivalis relative to controls; 240 proteins were shown to be underexpressed. This represented in total about 28% of the protein encoding ORFs annotated for this organism, and slightly less than half of the proteins that were observed experimentally. Production of several proteases, including the classical virulence factors RgpA, RgpB, and Kgp, was decreased. A separate validation study was carried out in which a 16-fold dilution of the P. gingivalis proteome was compared to the undiluted sample in order to assess the quantitative false negative rate (all ratios truly alternative). Truly null (no change) abundance ratios from technical replicates were used to assess the rate of quantitative false positives over the entire proteome. A global comparison between the direction of abundance change observed and previously published bioinformatic gene pair predictions for P. gingivalis will assist with future studies of P. gingivalis gene regulation and operon prediction. [source] Cold adaptation in the marine bacterium, Sphingopyxis alaskensis, assessed using quantitative proteomicsENVIRONMENTAL MICROBIOLOGY, Issue 10 2010Lily Ting Summary The cold marine environment constitutes a large proportion of the Earth's biosphere. Sphingopyxis alaskensis was isolated as a numerically abundant bacterium from several cold marine locations, and has been extensively studied as a model marine bacterium. Recently, a metabolic labelling platform was developed to comprehensively identify and quantify proteins from S. alaskensis. The approach incorporated data normalization and statistical validation for the purpose of generating highly confident quantitative proteomics data. Using this approach, we determined quantitative differences between cells grown at 10°C (low temperature) and 30°C (high temperature). Cold adaptation was linked to specific aspects of gene expression: a dedicated protein-folding system using GroESL, DnaK, DnaJ, GrpE, SecB, ClpB and PPIase; polyhydroxyalkanoate-associated storage materials; a link between enzymes in fatty acid metabolism and energy generation; de novo synthesis of polyunsaturated fatty acids in the membrane and cell wall; inorganic phosphate ion transport by a phosphate import PstB homologue; TonB-dependent receptor and bacterioferritin in iron homeostasis; histidine, tryptophan and proline amino acid metabolism; and a large number of proteins without annotated functions. This study provides a new level of understanding on how important marine bacteria can adapt to compete effectively in cold marine environments. This study is also a benchmark for comparative proteomic analyses with other important marine bacteria and other cold-adapted organisms. [source] Current trends in quantitative proteomicsJOURNAL OF MASS SPECTROMETRY (INCORP BIOLOGICAL MASS SPECTROMETRY), Issue 12 2009Monica H. Elliott Abstract It was inevitable that as soon as mass spectrometrists were able to tell biologists which proteins were in their samples, the next question would be how much of these proteins were present. This has turned out to be a much more challenging question. In this review, we describe the multiple ways that mass spectrometry has attempted to address this issue, both for relative quantitation and for absolute quantitation of proteins. There is no single method that will work for every problem or for every sample. What we present here is a variety of techniques, with guidelines that we hope will assist the researcher in selecting the most appropriate technique for the particular biological problem that needs to be addressed. We need to emphasize that this is a very active area of proteomics research,new quantitative methods are continuously being introduced and some ,pitfalls' of older methods are just being discovered. However, even though there is no perfect technique,and a better technique may be developed tomorrow,valuable information on biomarkers and pathways can be obtained using these currently available methods Copyright © 2009 John Wiley & Sons, Ltd. [source] A gel-free quantitative proteomics approach to investigate temperature adaptation of the food-borne pathogen Cronobacter turicensis 3032PROTEINS: STRUCTURE, FUNCTION AND BIOINFORMATICS, Issue 18 2010Paula Carranza Abstract The opportunistic food-borne pathogen Cronobacter sp. causes rare but significant illness in neonates and is capable to grow at a remarkably wide range of temperatures from 5.5 to 47°C. A gel-free quantitative proteomics approach was employed to investigate the molecular basis of the Cronobacter sp. adaptation to heat and cold-stress. To this end the model strain Cronobacter turicensis 3032 was grown at 25, 37, 44, and 47°C, and whole-cell and secreted proteins were iTRAQ-labelled and identified/quantified by 2-D-LC-MALDI-TOF/TOF-MS. While 44°C caused only minor changes in C. turicensis growth rate and protein profile, 47°C affected the expression of about 20% of all 891 identified proteins and resulted in a reduced growth rate and rendered the strain non-motile and filamentous. Among the heat-induced proteins were heat shock factors, transcriptional and translational proteins, whereas proteins affecting cellular morphology, proteins involved in motility, central metabolism and energy production were down-regulated. Notably, numerous potential virulence factors were found to be up-regulated at higher temperatures, suggesting an elevated pathogenic potential of Cronobacter sp. under these growth conditions. Significant alterations in the protein expression profile and growth rate of C. turicensis exposed to 25°C indicate that at this temperature the organism is cold-stressed. Up-regulated gene products comprised cold-shock, DNA-binding and ribosomal proteins, factors that support protein folding and proteins opposing cold-induced decrease in membrane fluidity, whereas down-regulated proteins were mainly involved in central metabolism. [source] Quantitative analysis of the secretome of TGF-, signaling-deficient mammary fibroblastsPROTEINS: STRUCTURE, FUNCTION AND BIOINFORMATICS, Issue 13 2010Baogang J. Xu Abstract Transforming growth factor , (TGF-,) is a master regulator of autocrine and paracrine signaling pathways between a tumor and its microenvironment. Decreased expression of TGF-, type II receptor (T,RII) in stromal cells is associated with increased tumor metastasis and shorter patient survival. In this study, SILAC quantitative proteomics was used to identify differentially externalized proteins in the conditioned media from the mammary fibroblasts with or without intact T,RII. Over 1000 proteins were identified and their relative differential levels were quantified. Immunoassays were used to further validate identification and quantification of the proteomic results. Differential expression was detected for various extracellular proteins, including proteases and their inhibitors, growth factors, cytokines, and extracellular matrix proteins. CXCL10, a cytokine found to be up-regulated in the T,RII knockout mammary fibroblasts, is shown to directly stimulate breast tumor cell proliferation and migration. Overall, this study revealed hundreds of specific extracellular protein changes modulated by deletion of T,RII in mammary fibroblasts, which may play important roles in the tumor microenvironment. These results warrant further investigation into the effects of inhibiting the TGF-, signaling pathway in fibroblasts because systemic inhibition of TGF-, signaling pathways is being considered as a potential cancer therapy. [source] ICPLQuant , A software for non-isobaric isotopic labeling proteomicsPROTEINS: STRUCTURE, FUNCTION AND BIOINFORMATICS, Issue 2 2010Achim Brunner Abstract The main goal of many proteomics experiments is an accurate and rapid quantification and identification of regulated proteins in complex biological samples. The bottleneck in quantitative proteomics remains the availability of efficient software to evaluate and quantify the tremendous amount of mass spectral data acquired during a proteomics project. A new software suite, ICPLQuant, has been developed to accurately quantify isotope-coded protein label (ICPL)-labeled peptides on the MS level during LC-MALDI and peptide mass fingerprint experiments. The tool is able to generate a list of differentially regulated peptide precursors for subsequent MS/MS experiments, minimizing time-consuming acquisition and interpretation of MS/MS data. ICPLQuant is based on two independent units. Unit 1 performs ICPL multiplex detection and quantification and proposes peptides to be identified by MS/MS. Unit 2 combines MASCOT MS/MS protein identification with the quantitative data and produces a protein/peptide list with all the relevant information accessible for further data mining. The accuracy of quantification, selection of peptides for MS/MS-identification and the automated output of a protein list of regulated proteins are demonstrated by the comparative analysis of four different mixtures of three proteins (Ovalbumin, Horseradish Peroxidase and Rabbit Albumin) spiked into the complex protein background of the DGPF Proteome Marker. [source] Insights into yeast adaptive response to the agricultural fungicide mancozeb: A toxicoproteomics approachPROTEINS: STRUCTURE, FUNCTION AND BIOINFORMATICS, Issue 3 2009Pedro M. Santos Abstract Toxicogenomics has the potential to elucidate gene,environment interactions to identify genes that are affected by a particular chemical at the early stages of the toxicological response and to establish parallelisms between different organisms. The fungicide mancozeb, widely used in agriculture, is an ethylene-bis-dithiocarbamate complex with manganese and zinc. Exposure to this pesticide has been linked to the development of idiopathic Parkinson's disease and cancer. Given that many signalling pathways and their molecular components are substantially conserved among eukaryotic organisms, we used Saccharomyces cerevisiae to get insights into the molecular mechanisms of mancozeb toxicity and adaptation based on expression proteomics. The early global response to mancozeb was analysed by quantitative proteomics using 2-DE. The target genes (e.g. TSA1, TSA2, SOD1, SOD2, AHP1, GRE2, GRX1, CYS3, PRE3, PRE6, PRE8, PRE9, EFT1, RPS5, TIF11, HSP31, HSP26, HSP104, HSP60, HSP70 -family) and the putative main transcription activators (e.g. Yap1, Msn2/Msn4, Met4, Hsf1, Aft1, Pdr1, Skn7, Rpn4p, Gcn4) of the complex mancozeb-induced expression changes are related with yeast response to stress, in particular to oxidative stress, protein translation initiation and protein folding, disassembling of protein aggregates and degradation of damaged proteins. Our results also suggest that this study provided powerful indications that may be useful to expand the knowledge obtained in yeast not only to the global response to mancozeb toxicity in phytopathogenic fungi but also to humans. [source] Proteomic analysis of membrane proteins expressed specifically in pluripotent murine embryonic stem cellsPROTEINS: STRUCTURE, FUNCTION AND BIOINFORMATICS, Issue 1 2009Atsushi Intoh Abstract Embryonic stem cells (ESCs) are established from the inner cell mass of preimplantation embryos, are capable of self-renewal, and exhibit pluripotency. Given these unique properties, ESCs are expected to have therapeutic potential in regenerative medicine and as a powerful tool for in vitro differentiation studies of stem cells. Various growth factors and extracellular matrix components regulate the pluripotency and differentiation of ESC progenies. Thus, the cell surface receptors that bind these regulatory factors are crucial for the precise regulation of stem cells. To identify membrane proteins that are involved in the regulation of pluripotent stem cells, the membrane proteins of murine ESCs cultured with or without leukemia inhibitory factor (LIF) were purified and analyzed by quantitative proteomics. 2-D PAGE-based analysis using fluorescently labeled proteins and shotgun-based analysis with isotope-labeled peptides identified 338 proteins, including transmembrane, membrane-binding, and extracellular proteins, which were expressed specifically in pluripotent or differentiated murine ESCs. Functions of the identified proteins revealed cell adhesion molecules, channels, and receptors, which are expected to play important roles in the maintenance of murine ESC pluripotency. Membrane proteins that are expressed in pluripotent ESCs but not in differentiated cells such as Slc16a1 and Bsg could be useful for the selection of the stem cells in vitro. [source] Quantitative proteomics and phosphoproteomics reveal novel insights into complexity and dynamics of the EGFR signaling networkPROTEINS: STRUCTURE, FUNCTION AND BIOINFORMATICS, Issue 21 2008Sandra Morandell Abstract The epidermal growth factor receptor (EGFR/ErbB1/Her1) belongs to the ErbB family of receptor tyrosine kinases (RTKs) and is a key player in the regulation of cell proliferation, differentiation, survival, and migration. Overexpression and mutational changes of EGFR have been identified in a variety of human cancers and the regulation of EGFR signaling plays a critical role in tumor development and progression. Due to its biological significance the EGFR signaling network is a widely used model system for the development of analytical techniques. Novel quantitative proteomics and phosphoproteomics approaches play an important role in the characterization of signaling pathways in a time and stimulus dependent manner. Recent studies discussed in this review provide new insights into different aspects of EGFR signal transduction, such as regulation and dynamics of its phosphorylation sites, association with interaction partners and identification of regulated phosphoproteins. Correlation of data from functional proteomics studies with results from other fields of signal transduction research by systems biology will be necessary to integrate and translate these findings into successful clinical applications. [source] Towards multidimensional liquid chromatography separation of proteins using fluorescence and isotope-coded protein labelling for quantitative proteomicsPROTEINS: STRUCTURE, FUNCTION AND BIOINFORMATICS, Issue 6 2008Florian Tribl Abstract HPLC has emerged as a valuable tool for separating proteins. To address the analysis of complex proteomes and quantitative changes of proteins therein, we developed a multidimensional LC (MDLC)-based approach followed by large gel 1-D SDS-PAGE. Here we present a novel strategy that allows for simultaneously identifying and quantifying differentially regulated proteins following three separation and fractionation steps. This MDLC platform integrates advantages of dual protein labelling using both fluorescence and isotope-coded tags for subsequent detection and quantification of abundance ratios of proteins by MS. [source] Early events of Bacillus anthracis germination identified by time-course quantitative proteomicsPROTEINS: STRUCTURE, FUNCTION AND BIOINFORMATICS, Issue 19 2006Pratik Jagtap Abstract Germination of Bacillus anthracis spores involves rehydration of the spore interior and rapid degradation of several of the protective layers, including the spore coat. Here, we examine the temporal changes that occur during B. anthracis spore germination using an isobaric tagging system. Over the course of 17,min from the onset of germination, the levels of at least 19 spore proteins significantly decrease. Included are acid-soluble proteins, several known and predicted coat proteins, and proteins of unknown function. Over half of these proteins are small (less than 100 amino acids) and would have been undetectable by conventional gel-based analysis. We also identified 20 proteins, whose levels modestly increased at the later time points when metabolism has likely resumed. Taken together, our data show that isobaric labeling of complex mixtures is particularly effective for temporal studies. Furthermore, we describe a rigorous statistical approach to define relevant changes that takes into account the nature of data obtained from multidimensional protein identification technology coupled with the use of isobaric tags. This study provides an expanded list of the proteins that may be involved in germination of the B. anthracis spore and their relative levels during germination. [source] Selective isolation of multiple positively charged peptides for 2-DE-free quantitative proteomicsPROTEINS: STRUCTURE, FUNCTION AND BIOINFORMATICS, Issue 16 2006Aniel Sánchez Abstract A method for quantitative proteomic analysis based on the selective isolation of multiply charged peptides (RH peptides) containing arginine and histidine residues is described. Two pools of proteins are digested in tandem with lysyl-endopeptidase and trypsin and the primary amino groups of proteolytic peptides are separately labeled with d3 - and d0 -acetic anhydride. This reaction has a dual purpose: (i) to allow the relative protein quantification in two different conditions and (ii) to restrict the positive charges of peptides to the presence of arginine and histidine. The N -acylated peptides are separated by cation-exchange chromatography into two groups, neutral and singly charged peptides (R,+,H,,,1) that are neither retained nor analyzed, whereas the multiply charged peptides (R,+,H>1) are retained into the column and can be eluted in batch or further fractionated using a saline gradient before LC-MS/MS analysis. In silico analysis revealed that the selective isolation of RH peptides considerably simplifies the complex mixture of peptides (three RH peptides/protein) and at the same time they represent 84% of the whole proteomes. The selectivity, and recovery of the method were evaluated with model proteins and with a complex mixture of proteins extracted from Vibrio cholerae. [source] Quantification of change in phosphorylation of BCR-ABL kinase and its substrates in response to Imatinib treatment in human chronic myelogenous leukemia cellsPROTEINS: STRUCTURE, FUNCTION AND BIOINFORMATICS, Issue 16 2006Xiquan Liang Dr. Abstract Phosphorylation by the constitutively activated BCR-ABL tyrosine kinase is associated with the pathogenesis of the human chronic myelogenous leukemia,(CML). It is difficult to characterize kinase response to stimuli or drug treatment because regulatory phosphorylation events are largely transient changes affecting low abundance proteins. Stable isotope labeling with amino acids in cell culture,(SILAC) has emerged as a pivotal technology for quantitative proteomics. By metabolically labeling proteins with light or heavy tyrosine, we are able to quantify the change in phosphorylation of BCR-ABL kinase and its substrates in response to drug treatment in human CML cells. In this study, we observed that BCR-ABL kinase is phosphorylated at tyrosines,393 and 644, and that SH2-domain containing inositol phosphatase (SHIP)-2 and downstream of kinase (Dok)-2 are phosphorylated at tyrosine,1135 and 299, respectively. Based on the relative intensity of isotopic peptide pairs, we demonstrate that the level of phosphorylation of BCR-ABL kinase as well as SHIP-2 and Dok-2 is reduced approximately 90% upon treatment with Imatinib, a specific inhibitor of BCR-ABL kinase. Furthermore, proteins, such as SHIP-1, SH2-containing protein (SHC) and Casitas B-lineage lymphoma proto-oncogene (CBL), are also regulated by Imatinib. These results demonstrate the simplicity and utility of SILAC as a method to quantify dynamic changes in phosphorylation at specific sites in response to stimuli or drug treatment in cell culture. [source] Proteomic analysis of redox- and ErbB2-dependent changes in mammary luminal epithelial cells using cysteine- and lysine-labelling two-dimensional difference gel electrophoresisPROTEINS: STRUCTURE, FUNCTION AND BIOINFORMATICS, Issue 11 2005Hong-Lin Chan Abstract Differential protein expression analysis based on modification of selected amino acids with labelling reagents has become the major method of choice for quantitative proteomics. One such methodology, two-dimensional difference gel electrophoresis (2-D DIGE), uses a matched set of fluorescent N -hydroxysuccinimidyl (NHS) ester cyanine dyes to label lysine residues in different samples which can be run simultaneously on the same gels. Here we report the use of iodoacetylated cyanine (ICy) dyes (for labelling of cysteine thiols, for 2-D DIGE-based redox proteomics. Characterisation of ICy dye labelling in relation to its stoichiometry, sensitivity and specificity is described, as well as comparison of ICy dye with NHS-Cy dye labelling and several protein staining methods. We have optimised conditions for labelling of nonreduced, denatured samples and report increased sensitivity for a subset of thiol-containing proteins, allowing accurate monitoring of redox-dependent thiol modifications and expression changes. Cysteine labelling was then combined with lysine labelling in a multiplex 2-D DIGE proteomic study of redox-dependent and ErbB2-dependent changes in epithelial cells exposed to oxidative stress. This study identifies differentially modified proteins involved in cellular redox regulation, protein folding, proliferative suppression, glycolysis and cytoskeletal organisation, revealing the complexity of the response to oxidative stress and the impact that overexpression of ErbB2 has on this response. [source] |