Home About us Contact | |||
Quantitative MRI (quantitative + mri)
Selected AbstractsQuantitative MRI for the assessment of bone structure and function,NMR IN BIOMEDICINE, Issue 7 2006Felix W. Wehrli Abstract Osteoporosis is the most common degenerative disease in the elderly. It is characterized by low bone mass and structural deterioration of bone tissue, leading to morbidity and increased fracture risk in the hip, spine and wrist,all sites of predominantly trabecular bone. Bone densitometry, currently the standard methodology for diagnosis and treatment monitoring, has significant limitations in that it cannot provide information on the structural manifestations of the disease. Recent advances in imaging, in particular MRI, can now provide detailed insight into the architectural consequences of disease progression and regression in response to treatment. The focus of this review is on the emerging methodology of quantitative MRI for the assessment of structure and function of trabecular bone. During the past 10 years, various approaches have been explored for obtaining image-based quantitative information on trabecular architecture. Indirect methods that do not require resolution on the scale of individual trabeculae and therefore can be practiced at any skeletal location, make use of the induced magnetic fields in the intertrabecular space. These fields, which have their origin in the greater diamagnetism of bone relative to surrounding marrow, can be measured in various ways, most typically in the form of R2,, the recoverable component of the total transverse relaxation rate. Alternatively, the trabecular network can be quantified by high-resolution MRI (µ-MRI), which requires resolution adequate to at least partially resolve individual trabeculae. Micro-MRI-based structure analysis is therefore technically demanding in terms of image acquisition and algorithms needed to extract the structural information under conditions of limited signal-to-noise ratio and resolution. Other requirements that must be met include motion correction and image registration, both critical for achieving the reproducibility needed in repeat studies. Key clinical applications targeted involve fracture risk prediction and evaluation of the effect of therapeutic intervention. Copyright © 2006 John Wiley & Sons, Ltd. [source] T2 relaxation reveals spatial collagen architecture in articular cartilage: A comparative quantitative MRI and polarized light microscopic studyMAGNETIC RESONANCE IN MEDICINE, Issue 3 2001Miika T. Nieminen Abstract It has been suggested that orientational changes in the collagen network of articular cartilage account for the depthwise T2 anisotropy of MRI through the magic angle effect. To investigate the relationship between laminar T2 appearance and collagen organization (anisotropy), bovine osteochondral plugs (N = 9) were T2 mapped at 9.4T with cartilage surface normal to the static magnetic field. Collagen fibril arrangement of the same samples was studied with polarized light microscopy, a quantitative technique for probing collagen organization by analyzing its ability to rotate plane polarized light, i.e., birefringence (BF). Depthwise variation of safranin O-stained proteoglycans was monitored with digital densitometry. The spatially varying cartilage T2 followed the architectural arrangement of the collagen fibril network: a linear positive correlation between T2 and the reciprocal of BF was established in each sample, with r = 0.91 ± 0.02 (mean ± SEM, N = 9). The current results reveal the close connection between the laminar T2 structure and the collagen architecture in histologic zones. Magn Reson Med 46:487,493, 2001. © 2001 Wiley-Liss, Inc. [source] Enzyme replacement therapy in adult-onset glycogenosis II: Is quantitative muscle MRI helpful?MUSCLE AND NERVE, Issue 1 2009A. Pichiecchio MD Abstract Although it has been shown that muscle magnetic resonance imaging (MRI) improves the phenotypic characterization of patients with neuromuscular disorders and allows accurate quantification of muscle and adipose tissue distribution, to date quantitative MRI has not been used to assess the therapeutic response in clinical trials of neuromuscular diseases. We discuss quantitative MRI findings after a 6-month course of enzyme replacement therapy administered to nine patients with adult-onset glycogenosis II. Muscle Nerve 40: 122,125, 2009 [source] Quantitative MRI for the assessment of bone structure and function,NMR IN BIOMEDICINE, Issue 7 2006Felix W. Wehrli Abstract Osteoporosis is the most common degenerative disease in the elderly. It is characterized by low bone mass and structural deterioration of bone tissue, leading to morbidity and increased fracture risk in the hip, spine and wrist,all sites of predominantly trabecular bone. Bone densitometry, currently the standard methodology for diagnosis and treatment monitoring, has significant limitations in that it cannot provide information on the structural manifestations of the disease. Recent advances in imaging, in particular MRI, can now provide detailed insight into the architectural consequences of disease progression and regression in response to treatment. The focus of this review is on the emerging methodology of quantitative MRI for the assessment of structure and function of trabecular bone. During the past 10 years, various approaches have been explored for obtaining image-based quantitative information on trabecular architecture. Indirect methods that do not require resolution on the scale of individual trabeculae and therefore can be practiced at any skeletal location, make use of the induced magnetic fields in the intertrabecular space. These fields, which have their origin in the greater diamagnetism of bone relative to surrounding marrow, can be measured in various ways, most typically in the form of R2,, the recoverable component of the total transverse relaxation rate. Alternatively, the trabecular network can be quantified by high-resolution MRI (µ-MRI), which requires resolution adequate to at least partially resolve individual trabeculae. Micro-MRI-based structure analysis is therefore technically demanding in terms of image acquisition and algorithms needed to extract the structural information under conditions of limited signal-to-noise ratio and resolution. Other requirements that must be met include motion correction and image registration, both critical for achieving the reproducibility needed in repeat studies. Key clinical applications targeted involve fracture risk prediction and evaluation of the effect of therapeutic intervention. Copyright © 2006 John Wiley & Sons, Ltd. [source] |